Как можно использовать дымовые газы. Дымовые газы. Насадные дымовые трубы

ДЫМОВЫЕ ГАЗЫ

ДЫМОВЫЕ ГАЗЫ

(Flue gases) - газообразные продукты горения.

Самойлов К. И. Морской словарь. - М.-Л.: Государственное Военно-морское Издательство НКВМФ Союза ССР , 1941


Смотреть что такое "ДЫМОВЫЕ ГАЗЫ" в других словарях:

    Дымовые газы - Газы, образующиеся в источниках выделения при горении органических веществ Источник: ОНД 90: Руководство по контролю источников загрязнения атмосферы … Словарь-справочник терминов нормативно-технической документации

    дымовые газы - Продукты горения топлива органич. происхождения, отходящие из рабочего пространства отапливаемых металлургич. агрегатов. Тематики металлургия в целом EN fume …

    дымовые газы - продукты горения топлива органического происхождения, отходящие из рабочего пространства отапливаемых металлургических агрегатов; Смотри также: Газы печные газы газы в металлах отходящие газы инертные газы …

    дымовые газы - топочные газы … Cловарь химических синонимов I

    влажные дымовые газы - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN wet flue gases … Справочник технического переводчика

    рециркулирующие дымовые газы - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN recycled flue gas es … Справочник технического переводчика

    усреднённые по составу дымовые газы - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN average flue gases … Справочник технического переводчика

    Газы в технике, применяются главным образом в качестве топлива; сырья для химической промышленности: химических агентов при сварке, газовой химико термической обработке металлов, создании инертной или специальной атмосферы, в некоторых… …

    I Газы (французское gaz; название предложено голланским учёным Я. Б. Гельмонтом агрегатное состояние вещества, в котором его частицы не связаны или весьма слабо связаны силами взаимодействия и движутся свободно, заполняя весь… … Большая советская энциклопедия

    дымовые трубы - сооружение для создания тяги и отвода газообразных продуктов сгорания топлива из разных металлургических печей и котлоагрегатов. В небольших печах дымовые трубы предназначаются для создания естественной тяги, под действием… … Энциклопедический словарь по металлургии

Ремонт интерьер строительство

В течение жизненного цикла здания ремонтные работы в определенный период необходимы, чтобы обновить интерьер. Модернизация также необходима, когда дизайн интерьера или функциональность отстают от современности.

Многоэтажное строительство

В России насчитывается более 100 миллионов единиц жилья, а большинство из них — «односемейные дома» или коттеджи. В городах, в пригородах и в сельской местности, собственные дома являются очень распространенным видом жилья.
Практика проектирования, строительства и эксплуатации зданий чаще всего является коллективной работой различных групп профессионалов и профессий. В зависимости от размера, сложности и цели конкретного проекта здания команда проекта может включать:
1. Разработчик недвижимости, который обеспечивает финансирование проекта;
Один или несколько финансовых учреждений или других инвесторов, которые предоставляют финансирование;
2. Органы местного планирования и управления;
3. Служба, который выполняет ALTA / ACSM и строительные обследования в рамках всего проекта;
4. Руководители зданий, которые координируют усилия различных групп участников проекта;
5. Лицензированные архитекторы и инженеры, которые проектируют здания и готовят строительные документы;

Теоретически необходимое количество воздуха для сжигания генераторного, доменного и коксового газов и их смесей определяют по формуле:

V 0 4,762/100 *((%CO 2 + %H 2)/2 + 2 ⋅ %CH 4 + 3 ⋅ %C 2 H 4 + 1,5 ⋅ %H 2 S - %O 2), нм 3 /нм 3 , где % – по объему.

Теоретически необходимое количество воздуха для сжигания природного газа:

V 0 4,762/100* (2 ⋅ %CH 4 + 3,5 ⋅ %C 2 H 6 + 5 ⋅ %C 3 H 8 + 6,5 ⋅ %C 4 H 10 + 8 ⋅ %C 5 H 12), нм 3 /нм 3 , где % – по объему.

Теоретически необходимое количество воздуха для сжигания твердых и жидких топлив:

V 0 = 0,0889 ⋅ %C P + 0,265 ⋅ %H P – 0,0333 ⋅ (%O P - %S P), нм 3 /кг, где % – по массе.

Действительное количество воздуха для горения

Необходимой полноты горения при сжигании топлива с теоретически необходимым количеством воздуха, т.е. при V 0 (α = 1), можно достичь только в том случае, если топливо полностью смешается с воздухом, идущим для горения, и представляет собой готовую горячую (стехиометрическую) смесь в газообразном виде. Этого достигают, например, при сжигании газообразного топлива с помощью горелок беспламенного горения и при сжигании жидкого топлива с предварительной их газификацией с помощью специальных горелок.

Действительное количество воздуха для сжигания топлива всегда больше, чем теоретически необходимое, так как в практических условиях для полноты сжигания почти всегда требуется некоторый избыток воздуха. Действительное количество воздуха определяют по формуле:

V α = αV 0 , нм 3 /кг или нм 3 /нм 3 топлива,

где α - коэффициент избытка воздуха.

При факельном способе сжигания, когда топливо с воздухом перемешивается в процессе горения, для газа, мазута и пылевидного топлива коэффициент избытка воздуха α = 1,05–1,25. При сжигании газа, предварительно полностью смешанного с воздухом, и при сжигании мазута с предварительной газификацией и интенсивным перемешиванием мазутного газа с воздухом α = 1,00–1,05. При слоевом способе сжигания углей, антрацита и торфа в механических топках при непрерывной подаче топлива и золоудалении – α = 1,3–1,4. При ручном обслуживании топок: при сжигании антрацитов α = 1,4 , при сжигании каменных углей α = 1,5–1,6 , при сжигании бурых углей α = 1,6–1,8. Для полугазовых топок α = 1,1–1,2.

Атмосферный воздух содержит некоторое количество влаги – d г/кг сухого воздуха. Поэтому объем влажного атмосферного воздуха, необходимого для горения, будет больше, чем рассчитанный по вышеприведенным формулам:

V B о = (1 + 0,0016d) ⋅ V о, нм 3 /кг или нм 3 /нм 3 ,

V B α = (1 + 0,0016d) ⋅ V α , нм 3 /кг или нм 3 /нм 3 .

Здесь 0,0016 = 1,293/(0,804*1000) представляет собой коэффициент пересчета весовых единиц влаги воздуха, выраженных в г/кг сухого воздуха, в объемные единицы – нм 3 водяных паров, содержащихся в 1 нм 3 сухого воздуха.

Количество и состав продуктов горения

Для генераторного, доменного, коксового газов и их смесей количество отдельных продуктов полного горения при сжигании с коэффициентом избытка воздуха, равным α:

Количество двуокиси углерода

V CO2 = 0,01(%CO 2 + %CO + %CH 4 + 2 ⋅ %C 2 H 4), нм 3 /нм 3

Количество сернистого ангидрида

V SO2 = 0,01 ⋅ %H 2 S нм 3 /нм 3 ;

Количество водяных паров

V H2O = 0,01(%H 2 + 2 ⋅ %CH 4 + 2 ⋅ %C 2 H 4 + %H 2 S + %H 2 O + 0,16d ⋅ V α), нм 3 /нм 3 ,

где 0,16d V B á нм 3 /нм 3 – количество водяных паров, вносимое влажным атмосферным воздухом при его влагосодержании d г/кг сухого воздуха;

Количество азота, переходящего из газа и вносимого с воздухом

Количество свободного кислорода, вносимого избыточным воздухом

V O2 = 0,21 (α - 1) ⋅ V O , нм 3 /нм 3 .

Общее количество продуктов горения генераторного, доменного, коксового газов и их смесей равно сумме их отдельных составляющих:

V дг = 0,01 (%CO 2 + %CO + %H 2 + 3 ⋅ %CH 4 + 4 ⋅ %C 2 H 4 + 2 ⋅ %H 2 S + %H 2 O + %N 2) + + V O (α + 0,0016 dα - 0,21), нм 3 /нм 3 .

Для природного газа количество отдельных продуктов полного горения определяют по формулам:

V CO2 = 0,01(%CO 2 + %CH 4 + 2 ⋅ %C 2 H 6 + 3 ⋅ %C 3 H 8 + 4 ⋅ %C 4 H 10 + 5 ⋅ %C 5 H 12) нм 3 /нм 3 ;

V H2O = 0,01(2 ⋅ %CH 4 + 3 ⋅ %C 2 H 6 + 4 ⋅ %C 3 H 8 + 5 ⋅ %C 4 H 10 + 6 ⋅ %C 5 H 12 + %H 2 O + 0,0016d V α) нм 3 /нм 3 ;

V N2 = 0,01 ⋅ %N 2 + 0,79 V α , нм 3 /нм 3 ;

V O2 = 0,21(α - 1) V O , нм 3 /нм 3 .

Общее количество продуктов горения природного газа:

V дг = 0,01(%CO 2 + 3 ⋅ %CH 4 + 5 ⋅ %C 2 H 6 +7 ⋅ %C 3 H 8 + 9 ⋅ %C 4 ⋅H 10 + 11 ⋅ %C 5 H 12 + %H 2 O + + %N 2) + V O (α + 0,0016dα - 0,21), нм 3 /нм 3 .

Для твердого и жидкого топлив количество отдельных продуктов полного горения:

V CO2 = 0,01855 %C P , нм 3 /кг (здесь и далее, % – процентное содержание в рабочем газе элементов по массе);

V SO2 = 0,007 % S P нм 3 /кг.

Для твердого и жидкого топлива

V H2O ХИМ = 0,112 ⋅ %H P , нм 3 /кг,

где V H2O ХИМ – водяные пары, образующиеся при горении водорода.

V H2O МЕХ = 0,0124 %W P , нм 3 /кг,

где V H2O МЕХ – водяные пары, образующиеся при испарении влаги рабочего топлива.

Если для распыления жидкого топлива подается пар в количестве W ПАР кг/кг топлива, то к объему водяных паров надо добавить величину 1,24 W ПАР нм 3 /кг топлива. Влага, вносимая атмосферным воздухом при влагосодержании d г/кг сухого воздуха, составляет 0,0016 d V á нм 3 /кг топлива. Следовательно, общее количество водяных паров:

V H2O = 0,112 ⋅ %H P + 0,0124 (%W P + 100 ⋅ %W ПАР) + 0,0016d V á , нм 3 /кг.

V N2 = 0,79 ⋅ V α + 0,008 ⋅ %N P , нм 3 /кг

V O2 = 0,21 (α - 1) V O , нм 3 /кг.

Общая формула для определения продуктов горения твердого и жидкого топлива:

V дг = 0,01 + V O (α + + 0,0016 dα - 0,21) нм 3 /кг.

Объем дымовых газов при сжигании топлива с теоретически необходимым количеством воздуха (V O нм 3 /кг, V O нм 3 /нм 3) определяют по приведенным расчетным формулам с коэффициентом избытка воздуха, равным 1,0, при этом в составе продуктов горения будет отсутствовать кислород.

Как известно, от дымовых газов к стенкам дымоходов передача тепла происходит за счет трения, которое возникает при движении этих же газов. Под влиянием тяги скорость газа снижается и высвобожденная энергия (то есть тепло) переходит стенкам . Получается, что процесс передачи тела напрямую зависит от скорости движения газа по каналам очага. А от чего же тогда зависит скорость газов?

Тут ничего сложного нет – на скорость движения дым.газов влияет площадь сечения дым.каналов. При малом сечении скорость увеличивается, при большей же площади – наоборот, скорость снижается, и дымовые газы передают больше энергии (тепла), при этом теряя свою температуру. Кроме сечения, на эффективность передачи тепла влияет и расположение дымового канала. К примеру, в горизонтальном дым. канале тепло «впитывается» намного эффективней, быстрей. Это происходит за счет того, что горячие дымовые газы легче и всегда находятся выше, эффективно отдавая тепло верхним стенкам дым. канала.

Давайте рассмотрим разновидности систем дымооборотов, их особенности, отличия и показатели эффективности:

Виды дымооборотов

Дымообороты являют собой систему спец-каналов внутри печи (камина), соединяющие топливник с дым. трубой. Основное их предназначение – это отвод газов из топки печи и отдача тепла самой печке. Для этого их внутреннюю поверхность делают гладкой и ровной, что снижает сопротивляемость движению газов. Дымовые каналы могут быть длинными – у печек, короткими – у каминов, а также: вертикальными, горизонтальными и смешанными (подъемными/опускными).

Согласно своим конструктивным особенностям, системы дымооборотов делятся на:

  • канальные (подвиды: много- и мало- оборотные)
  • бесканальные (подвид: с системой камер, разделенных перегородками),
  • смешанные.

Все они имеют свои отличия, и, конечно же – плюсы и минусы. Наиболее негативны многооборотные системы с горизонтальным и вертикальным расположением дым.каналов, их применять в печах вообще не желательно! А вот самой приемлемой и экономичной системой дымооборотов считается смешанная система с горизонтальн. каналами и вертикальными колпаками прямо над ними. Другие системы также широко применяются в строительстве печей, но тут нужно знать нюансы их конструкции. О чем мы и «поговорим» далее, рассматривая каждую систему по отдельности:

Однооборотные системы дымовых каналов

Конструкция данной системы предполагает выход дымовых газов из топливника в восходящий канал, далее их переход в опускной канал, из опускного – в подъемный канал, а уже от туда — в дымоход. Данная система обеспечивает печам совсем малую теплопоглащающую поверхность, от чего газы намного меньше отдают тепла печи и ее КПД понижается. Кроме этого из-за очень высокой температуры в первом канале происходит неравномерный нагрев массива печи и растрескивание ее кладки, то есть разрушение. А отходящие газы достигают свыше 200градусов.

Однооборотная система дымооборотов с тремя опускными каналами

В данной системе чад из топливника переходит в 1-й восходящий канал, далее опускается по трем каналам опускным, переходит в подъемный канал, и лишь потом выходит в дым.трубу. Основной ее недостаток – перегрев 1-го восходящего канала и нарушение правила равномерности всех площадей сечения каналов. Дело в том, что опускные каналы (их всего 3) образуют в сумме такую площадь сечения, которая аж в три раза превышает S сечения в подъемн. каналах и подвертках, что приводит к снижению тяги в очаге. А это существенный минус.

Кроме названных недостатков в работе системы с тремя опускн. каналами, можно выделить еще один – это очень плохое растапливание печи после долгого перерыва.

Бесканальные системы

Тут дымовые газы начинают свой путь из топливника через хайло (отверстие для выхода дым.газов в дымообороты), потом переходят в колпак, далее вверх – до самой перекрыши очага, там остывают, передают тепло печи, опускаются вниз и выходят в дым.трубу в нижней области печи. Вроди все понятно и просто, но недостаток у такой бесканальной системы все же имеется: это очень сильный нагрев верхней области печи (перекрыши), чрезмерные отложения сажи и копоти на стенках колпака, а также высокие температуры отходящих дым.газов.

Бесканальные системы дымооборотов с 2-мя колпаками

Схема работы такой системы заключается в следующем: сначала из топливника дым.газы поступают в 1-вый колпак, затем поднимаются до перекрыши, опускаются, и потом переходят во второй колпак. Тут опять они поднимаются к перекрыши, снижаются и внизу через канал уходят в дымоход. Все это намного эффективней, нежели у одно-колпаковой бесканальной системы. С двумя колпаками стенкам передается намного больше тепла, а также намного заметнее снижается темпер-ра отходящих газов. Однако, перегрев верхней области печи и осадок сажи – не меняются, то есть не уменьшаются!

Бесканальные колпаковые системы – с контрфорсами на внутр. поверхностях печи

В данной колпаковой системе путь дыма следующий: из топливника переход в колпак, подъем к перекрыши, и передача части тепла самой перекрыше, боковым стенкам очага и контрфорсам. Она также имеет некий минус – это чрезмерный осадок сажи (и на стенках печи, и на контрфорсах), от чего может возникнуть возгорание этой копоти и разрушение печи.

Многоооборотные сис-мы дымооборотов с горизонтальными дым.каналами

Тут дым из топливника попадает в горизонтальные каналы, проходит по ним и отдает много тепла внутренней поверхности печи. После этого уходит в дым.трубу. При этом дымовые газы переохлаждаются, спадает сила тяги и печь начинает дымить. В результате, откладывается сажа, копоть, выпадает конденсат…. и, можно сказать, неприятности начинаются. Поэтому, перед использованием данной системы, дважды все взвесьте.

Многоооборотные сис-мы с вертикальными дым. каналами

Отличаются тем, что дым.газы из топливника сразу попадают в вертикальные подъемные и опускные дымовые каналы, также отдают тепло внутренним поверхностям очага, а потом уходят в дымоход. При этом недостатки такой сис-мы аналогичны предыдущей, плюс добавляется еще один. Первый восходящий канал (подъемный) перегревается, от чего неравномерно нагреваются наружные поверхности очага и начинается растрескивание его кирпичной кладки.

Смешанные сис-мы дымооборотов с горизонтальными и вертикальными дым.каналами

Отличаются тем, что дымовые газы переходят сначала в горизонтальные каналы, потом в вертикальные подъемные, в опускные, и лишь потом – в дымовую трубу. Недостаток данного процесса таков: из-за сильного переохлаждения газов происходит снижение тяги, она ослабевает, что приводит к чрезмерному отложению сажи на стенах каналов, появлению конденсата, и, конечно же, – к сбою работы печи и к ее разрушению.

Смешанная система дымооборотов со свободным и принудительным движением газов

Принцип работы данной сис-мы следующий: когда во время горения образуется тяга, она выталкивает дым.газы в горизонтальные и вертикальные каналы. Эти газы отдают тепло внутренним стенкам печи и уходят в дымоход. При этом часть газов поднимается в замкнутые вертикальные каналы (колпаки), которые находятся над горизонтальн. каналами. В них дымовые газы остывают, тяжелеют и уходят снова в горизонтальн. каналы. Такое движение происходит в каждом колпаке. В результате дым. газы передают все свое тепло, по максимуму, положительно влияя на КПД печи и повышая его до 89%!!!

Но есть одно «но»! В данной системе очень развита тепловосприимчивость, потому газы очень быстро остывают, даже переохлаждаются, ослабляя тягу и нарушая работу печи. На самом деле, такая печь не смогла бы работать, однако есть в ней спец-устройство, которое регулирует данный негативный процесс. Это инжекционные (подсосные) отверстия или сис-ма авторегуляции тяги и температуры выходящих газов. Для этого, при кладке очага, из топливника и в горизонтальных каналах проделываются отверстия с сечением 15-20см2. Когда тяга начинает падать и снижается температура газов, в горизонт. каналах образуется разряжение и через данные отверстия «засасываются» горячие газы из нижних дым.каналов и из топливника. В результате происходит повышение температуры и нормализация тяги. Когда же тяга, давление и температура дыма в норме, он не заходит в подсосный канал – для этого необходимо разряжение, снижение его тяги и температуры.

Опытные печники уменьшая/увеличивая протяженность горизонтальн. каналов, сечение и количество инжекционных каналов регулируют эффективность работы печи, тем самым достигая самых лучших результатов ее качества, экономичности и повышая КПД до 89 %!!!

С такой сис-мой дымооборотов у практически нет недостатков. Они отлично прогреваются – от пола до самого верха, при этом равномерно! В помещении не наблюдаются резкие перепады температуры. Если дом теплый, а на улице -10 мороза, то печку можно топить через 30-48часов!!! Если же на улице до -20, то придется топить почаще, регулярно! Именно регулярные топки и являются ее недостатком. Периодические же топки в смешанных дым.системах приводят к значительному накоплению сажи.

Как оптимизировать печь с многооборотной системой дымовых каналов?

1). Сделать подсосный канал в каждом горизонтальн. канале – сечением 15-20см2.

2). Установить подсосные каналы через каждых 0,7м длины канала.

В итоге, ваша печь станет намного эффективней: будет быстрей растапливаться, поддерживать стабильную температуру исходящих дымовых газов и менее накапливать сажу.

В процессе сгорания твердого топлива, как известно, образуется остаток--зола в виде мелких (порошкообразных) частиц и крупных кусков -- шлака. При слоевом сжигании топлива различных видов основная масса золы (примерно 75--90%) остается в топке и газоходах котла, а остальная часть (более мелкая) уносится дымовыми газами в атмосферу.

При факельном сжигании твердого топлива (в виде пыли) унос золы с дымовыми газами значительно возрастет и достигнет 80--90%. Вынесенные таким образом зола и несгоревшие мельчайшие частицы топлива (унос) загрязняют атмосферу, следовательно, ухудшают санитарно-гигиенические условия окружающей местности. Выбрасываемая в атмосферу летучая зола очень тонкая, она легко может проникать в глаза и легкие человека, нанося огромный вред здоровью. Поэтому дымовые газы перед выбросом их в атмосферу необходимо очищать от золы и уноса в специальных устройствах -- золоуловителях (например, золоуловители ЗУ), которыми оборудуются почти все современные котельные, работающие на твердом топливе.

Котельные установки крупных городов являются лидерами не только по количеству вредных выбросов в окружающую среду, но и по их ядовитому воздействию. Регулярно проводимая оценка воздействия на окружающую среду высокотоксичных веществ показывает, что качество воздуха в крупных российских городах ежегодно ухудшается. Как следствие - среди населения этих городов увеличивается количество людей с заболеваниями органов дыхания; у жителей мегаполисов снижается иммунитет и учащаются случаи возникновения онкологических заболеваний.

Исследования дымовых уходящих газов топливосжигающих установок показывают, что в их составе основными загрязнителями атмосферного воздуха являются оксиды углерода (до 50%), оксиды серы (до 20 процентов), оксиды азота (до 6-8%), углеводороды (до 5-20%), сажа, оксиды и производные минеральных включений и примесей углеводородного топлива. В свою очередь, выхлопные и отработавшие газы тепловых двигателей выбрасывают в воздушный бассейн более 70 процентов оксидов углерода и углеводородов (бензолы, формальдегиды, бенз(а)пирен), около 55 процентов оксидов азота, до 5,5 процента воды, а также сажу (тяжелые металлы), гарь, копоть и т.д.

Дымовые газы котельных установок и двигателей содержат десятки тысяч химических веществ, соединений и элементов, более двухсот из которых являются высокотоксичными и ядовитыми.

При выходе в атмосферу выбросы содержат продукты реакций в твердой, жидкой и газовой фазах. Изменения состава выбросов после их выхода могут проявляться в виде: осаждения тяжелых фракций; распада на компоненты по массе и размерам; химические реакции с компонентами воздуха; взаимодействия с воздушными течениями, облаками, атмосферными осадками, солнечным излучением различной частоты (фотохимические реакции) и др.

В результате состав выбросов может существенно измениться, могут образоваться новые компоненты, поведение и свойства которых (в частности, токсичность, активность, способность к новым реакциям) могут значительно отличаться от исходных. Не все эти процессы в настоящее время изучены с достаточной полнотой, но по наиболее важным имеются общие представления, касающиеся газообразных, жидких и твердых веществ.

Наибольший экологический ущерб атмосфере и окружающей природной среде в целом наносят такие вещества, как оксиды азота и углерода, альдегиды, формальдегиды, бенз(а)пирен и другие ароматические соединения, которые относятся к отравляющим веществам.

Кроме того, при работе любой установки и двигателя выбрасывается около 1,0-2,0 процента потребляемого топлива, которое оседает на поверхностях (земли, воды, деревьев и т.п.) в виде несгоревших углеводородов, сажи, пыли и золы.

Дымовые газы имеют неприятный запах и оказывают вредное, а порой смертельное воздействие на организм человека, флору и фауну. Газовое и тепловое загрязнение воздушного бассейна способствует образованию кислотных дождей, задымлению атмосферы, изменяет характер облачности, что приводит к усилению парникового эффекта.

Наибольшую опасность для человека и живых организмов представляют компоненты, вызывающие раковые заболевания, это канцерогенные вещества, представленные в дымовых и выхлопных газах полициклическими ароматическими углеводородами (С Х Н Y).

К числу обладающих большей канцерогенной активностью, в первую очередь, следует отнести 3,4 бенз(а)пирен (С 2 0Н 12), который образуется при нарушении организации процесса горения. Наибольший выход канцерогенных веществ, в частности 3,4 бенз(а)пирена, наблюдается на нестационарных и переходных режимах.

Основные загрязняющие вещества

Диоксид серы, или сернистый ангидрид (сернистый газ).

Наиболее широко распространенное соединение серы - сернистый ангидрид (SO 2) - бесцветный газ с резким запахом, примерно вдвое тяжелее воздуха, образующийся при сгорании серосодержащих видов топлива (в первую очередь угля и тяжелых фракций нефти).

Сернистый газ особенно вреден для деревьев, он приводит к хлорозу (пожелтению или обесцвечиванию листьев) и карликовости. У человека этот газ раздражает верхние дыхательные пути, так как легко растворяется в слизи гортани и трахеи. Постоянное воздействие сернистого газа может вызвать заболевание дыхательной системы, напоминающее бронхит. Сам по себе этот газ не наносит существенного ущерба здоровью населения, но в атмосфере реагирует с водяным паром с образованием вторичного загрязнителя - серной кислоты (Н 2 SО 4). Капли кислоты переносятся на значительные расстояния и, попадая в легкие, сильно их разрушают. Наиболее опасная форма загрязнения воздуха наблюдается при реакции сернистого ангидрида с взвешенными частицами, сопровождающейся образованием солей серной кислоты, которые при дыхании проникают в легкие и там оседают.

Оксид углерода, или угарный газ.

Очень ядовитый газ без цвета, запаха и вкуса. Он образуется при неполном сгорании древесины, ископаемого топлива, при сжигании твердых отходов и частичном анаэробном разложении органики. В закрытом помещении, наполненном угарным газом, снижается способность гемоглобина эритроцитов переносить кислород, из-за чего у человека замедляются реакции, ослабляется восприятие, появляются головная боль, сонливость, тошнота. Под воздействием большого количества угарного газа может произойти обморок, случиться кома и даже наступить смерть.

Взвешенные частицы.

Взвешенные частицы, включающие пыль, сажу, пыльцу и споры растений и пр., сильно различаются по размерам и составу. Они могут либо непосредственно содержаться в воздушной среде, либо быть заключены в капельках, взвешенных в воздухе (аэрозоли). В целом за год в атмосферу Земли поступает около 100 млн. т. аэрозолей антропогенного происхождения. Это примерно в 100 раз меньше, чем количество аэрозолей естественного происхождения - вулканических пеплов, развеваемой ветром пыли и брызг морской воды. Примерно 50% частиц антропогенного происхождения выбрасывается в воздух из-за неполного сгорания топлива на транспорте, заводах, фабриках и тепловых электростанциях. По данным Всемирной организации здравоохранения, 70% населения, живущего в городах развивающихся стран, дышит сильно загрязненным воздухом, содержащим множество аэрозолей.

Нередко аэрозоли бывают самой явной формой загрязнения воздуха, так как они сокращают дальность видимости и оставляют грязные следы на окрашенных поверхностях, тканях, растительности и прочих предметах. Более крупные частицы в основном улавливаются волосками и слизистой оболочкой носа и гортани, а затем выводятся наружу. Предполагается, что частицы размером менее 10 мкм наиболее опасны для здоровья человека; они настолько малы, что проникают через защитные барьеры организма в легкие, повреждая ткани дыхательных органов и способствуя развитию хронических заболеваний дыхательной системы и рака. Другие типы аэрозольного загрязнения осложняют протекание бронхитов и астмы и вызывают аллергические реакции. Накопление определенного количества мелких частиц в организме затрудняет дыхание из-за закупорки капилляров и постоянного раздражения органов дыхания.

Летучие органические соединения (ЛОС). Это ядовитые пары в атмосфере. Они являются источником множества проблем, в том числе мутаций, нарушений дыхания и раковых заболеваний, и, кроме того, играют главную роль при образовании фотохимических окислителей.

Антропогенные источники выбрасывают в атмосферу множество ядовитых синтетических органических веществ, например, бензол, хлороформ, формальдегид, фенолы, толуол, трихлорэтан и винилхлорид. Основная часть этих соединений поступает в воздух при неполном сгорании углеводородов автомобильного топлива, на теплоэлектростанциях, химических и нефтеперегонных заводах.

Окислы азота NO x Оксид (NO) и диоксид (NO 2) азота образуются при сгорании топлива при очень высоких температурах (выше 650 о С) и избытке кислорода. В дальнейшем в атмосфере оксид азота окисляется до газообразного диоксида красно-бурого цвета, который хорошо заметен в атмосфере большинства крупных городов. Основными источниками диоксида азота в городах являются выхлопные газы автомобилей и выбросы теплоэлектростанций (причем использующих не только ископаемые виды топлива). Кроме того, диоксид азота образуется при сжигании твердых отходов, так как этот процесс происходит при высоких температурах горения. Также NO 2 играет не последнюю роль при образовании фотохимического смога в приземном слое атмосферы. В значительных концентрациях диоксид азота имеет резкий сладковатый запах. В отличие от сернистого ангидрида, он раздражает нижний отдел дыхательной системы, особенно легочную ткань, ухудшая тем самым состояние людей, страдающих астмой, хроническими бронхитами и эмфиземой легких. Диоксид азота повышает предрасположенность к острым респираторным заболеваниям, например пневмонии.

При растворении окислов азота в воде образуются кислоты, которые являются одной из главных причин выпадения так называемых «кислых» дождей, приводящих к гибели лесов. Образование в приземном слое озона также является одним из следствий наличия в нем окислов азота. В стратосфере закись азота инициирует цепочку реакций, приводящих к разрушению озонового слоя, защищающего нас от воздействия ультрафиолетового излучения Солнца.

Озон О 3 . Озон образуется при расщеплении либо молекулы кислорода (О 2) либо диоксида азота (NО 2) с образованием атомарного кислорода (О), который затем присоединяется к другой молекуле кислорода. В этом процессе участвуют углеводороды, связывающие молекулу оксида азота с другими веществами. Хотя в стратосфере озон играет важную роль как защитный экран, поглощающий коротковолновую ультрафиолетовую радиацию, в тропосфере он как сильный окислитель разрушает растения, строительные материалы, резину и пластмассу. Озон имеет характерный запах, служащий признаком фотохимического смога. Вдыхание его человеком вызывает кашель, боль в груди, учащенное дыхание и раздражение глаз, носовой полости и гортани. Воздействие озона приводит также к ухудшению состояния больных хроническими астмой, бронхитами, эмфиземой легких и страдающих сердечно-сосудистыми заболеваниями.

Двуокись углерода СО 2 Неядовитый газ. Но увеличение концентрации техногенного углекислого газа в атмосфере является одной из главных причин наблюдающегося потепления климата, что связано с парниковым эффектом этого газа.



Публикации по теме