Верхний доверительный предел. Доверительные интервалы для частот и долей. Построение доверительного интервала

Вычисление доверительного интервала базируется на средней ошибке соответствующего параметра. Доверительный интервал показывает, в каких пределах с вероятностью (1-a) находится истинное значение оцениваемого параметра. Здесь a – уровень значимости, (1-a) называют также доверительной вероятностью.

В первой главе мы показали, что, например, для среднего арифметического, истинное среднее по сово­купности примерно в 95% случаев лежит в пределах 2 средних ошибок среднего. Таким образом, границы 95% доверительного интервала для среднего будет отстоять от выборочного среднего на удвоенную среднюю ошибку среднего, т.е. мы умножаем среднюю ошибку среднего на некий коэффициент, зависящий от доверительной вероятности. Для среднего и разности средних берётся коэффициент Стьюдента (критическое значение критерия Стьюдента), для доли и разности долей критическое значение критерия z. Произведение коэффициента на среднюю ошибку можно назвать предельной ошибкой данного параметра, т.е. максимальную, которую мы можем получить при его оценке.

Доверительный интервал для среднего арифметического : .

Здесь - выборочное среднее;

Средняя ошибка среднего арифметического;

s – выборочное среднее квадратическое отклонение;

n

f = n -1 (коэффициент Стьюдента).

Доверительный интервал для разности средних арифметических :

Здесь - разность выборочных средних;

- средняя ошибка разности средних арифметических;

s 1 ,s 2 – выборочные средние квадратические отклонения;

n 1 ,n 2

Критическое значение критерия Стьюдента при заданных уровне значимости a и числе степеней свободы f=n 1 +n 2 -2 (коэффициент Стьюдента).

Доверительный интервал для доли :

.

Здесь d – выборочная доля;

– средняя ошибка доли;

n – объём выборки (численность группы);

Доверительный интервал для разности долей :

Здесь - разность выборочных долей;

– средняя ошибка разности средних арифметических;

n 1 ,n 2 – объёмы выборок (численности групп);

Критическое значение критерия z при заданном уровне значимости a ( , , ).

Вычисляя доверительные интервалы для разности показателей, мы, во-первых, непосредственно видим возможные значения эффекта, а не только его точечную оценку. Во-вторых, можем сделать вывод о принятии или опровержении нулевой гипотезы и, в-третьих, можем сделать вывод о мощности критерия.

При проверке гипотез с помощью доверительных интервалов надо придерживаться следующего правила:

Если 100(1-a)-процентный доверительный интервал разности средних не содержит нуля, то различия статистически значимы на уровне значимости a; напротив, если этот интервал содержит ноль, то различия статистически не значимы.

Действительно, если этот интервал содержит ноль, то, значит, сравниваемый показатель может оказаться как больше, так и меньше в одной из групп, по сравнению с другой, т.е. наблюдаемые различия случайны.

По месту, где находится ноль внутри доверительного интервала, можно судить о мощности критерия. Если ноль близок к нижней или верхней границе интервала, то возможно при большей численности сравниваемых групп, различия достигли бы статистической значимости. Если ноль близок к середине интервала, то, значит, равновероятно и увеличение и уменьшение показателя в экспериментальной группе, и, вероятно, различий действительно нет.

Примеры:

Сравнить операционную летальность при применении двух разных видов анестезии: с применением первого вида анестезии оперировалось 61 человек, умерло 8, с применением второго – 67 человек, умерло 10.

d 1 = 8/61 = 0,131; d 2 = 10/67 = 0,149; d1-d2 = - 0,018.

Разность летальностей сравниваемых методов будет находиться в интервале (-0,018 - 0,122; -0,018 + 0,122) или (-0,14 ; 0,104) с вероятностью 100(1-a) = 95%. Интервал содержит ноль, т.е. гипотезу об одинаковой летальности при двух разных видах анестезии отвергнуть нельзя.

Таким образом, летальность может и уменьшится до 14% и увеличиться до 10,4% с вероятностью 95%, т.е. ноль находится примерно по середине интервала, поэтому можно утверждать, что, скорее всего, действительно не отличаются по летальности эти два метода.

В рассмотренном ранее примере сравнивалось среднее время нажатия при теппинг-тесте в четырёх группах студентов, отличающихся по экзаменационной оценке. Вычислим доверительные интервалы среднего времени нажатия для студентов, сдавших экзамен на 2 и на 5 и доверительный интервал для разности этих средних.

Коэффициенты Стьюдента находим по таблицам распределения Стьюдента (см. приложение): для первой группы: = t(0,05;48) = 2,011; для второй группы: = t(0,05;61) = 2,000. Таким образом, доверительные интервалы для первой группы: = (162,19-2,011*2,18 ; 162,19+2,011*2,18) = (157,8 ; 166,6) , для второй группы (156,55-2,000*1,88 ; 156,55+2,000*1,88) = (152,8 ; 160,3). Итак, для сдавших экзамен на 2, среднее время нажатия лежит в пределах от 157,8 мс до 166,6 мс с вероятностью 95%, для сдавших экзамен на 5 – от 152,8 мс до 160,3 мс с вероятностью 95%.

Проверять нулевую гипотезу можно и по доверительным интервалам для средних, а не только для разности средних. Например, как в нашем случае, если доверительные интервалы для средних перекрываются, то нулевую гипотезу отвергнуть нельзя. Для того чтобы отвергнуть гипотезу на выбранном уровне значимости, соответствующие доверительные интервалы не должны перекрываться.

Найдём доверительный интервал для разности среднего времени нажатия в группах сдавших экзамен на 2 и на 5. Разность средних: 162,19 – 156,55 = 5,64. Коэффициент Стьюдента: = t(0,05;49+62-2) = t(0,05;109) = 1,982. Групповые средние квадратические отклонения будут равны: ; . Вычисляем среднюю ошибку разности средних: . Доверительный интервал: =(5,64-1,982*2,87 ; 5,64+1,982*2,87) = (-0,044 ; 11,33).

Итак, разница среднего времени нажатия в группах, сдавших экзамен на 2 и на 5, будет находиться в интервале от -0,044 мс до 11,33 мс. В этот интервал входит ноль, т.е. среднее время нажатия у отлично сдавших экзамен, может и увеличиться и уменьшится по сравнению с неудовлетворительно сдавшими, т.е. нулевую гипотезу отвергнуть нельзя. Но ноль находится очень близко к нижней границе, время нажатия гораздо вероятнее всё-таки уменьшается у отлично сдавших. Таким образом, можно сделать вывод, что различия в среднем времени нажатия между сдавшими на 2 и на 5 всё-таки есть, просто мы не смогли их обнаружить при данном изменении среднего времени, разбросе среднего времени и объёмах выборок.

Мощность критерия – это вероятность отвергнуть неверную нулевую гипотезу, т.е. найти различия там, где они действительно есть.

Мощность критерия определяется исходя из уровня значимости, величины различий между группами, разброса значений в группах и объёма выборок.

Для критерия Стьюдента и дисперсионного анализа можно воспользоваться диаграммами чувствительности.

Мощность критерия можно использовать при предварительном определении необходимой численности групп.

Доверительный интервал показывает, в каких пределах с заданной вероятностью находится истинное значение оцениваемого параметра.

С помощью доверительных интервалов можно проверять статистические гипотезы и делать выводы о чувствительности критериев.

ЛИТЕРАТУРА.

Гланц С. – Глава 6,7.

Реброва О.Ю. – с.112-114, с.171-173, с.234-238.

Сидоренко Е. В. – с.32-33.

Вопросы для самопроверки студентов.

1. Что такое мощность критерия?

2. В каких случаях необходимо оценить мощность критериев?

3. Способы расчёта мощности.

6. Как проверить статистическую гипотезу с помощью доверительного интервала?

7. Что можно сказать о мощности критерия при расчёте доверительного интервала?

Задачи.

В предыдущих подразделах мы рассмотрели вопрос об оценке неизвестного параметра а одним числом. Такая оценка называется «точечной». В ряде задач требуется не только найти для параметра а подходящее численное значение, но и оценить его точность и надежность. Требуется знать, к каким ошибкам может привести замена параметра а его точечной оценкой а и с какой степенью уверенности можно ожидать, что эти ошибки не выйдут за известные пределы?

Такого рода задачи особенно актуальны при малом числе наблюдений, когда точечная оценка а в значительной мере случайна и приближенная замена а на а может привести к серьезным ошибкам.

Чтобы дать представление о точности и надежности оценки а ,

в математической статистике пользуются так называемыми доверительными интервалами и доверительными вероятностями.

Пусть для параметра а получена из опыта несмещенная оценка а. Мы хотим оценить возможную при этом ошибку. Назначим некоторую достаточно большую вероятность р (например, р = 0,9, 0,95 или 0,99) такую, что событие с вероятностью р можно считать практически достоверным, и найдем такое значение s, для которого

Тогда диапазон практически возможных значений ошибки, возникающей при замене а на а , будет ± s; большие по абсолютной величине ошибки будут появляться только с малой вероятностью а = 1 - р. Перепишем (14.3.1) в виде:

Равенство (14.3.2) означает, что с вероятностью р неизвестное значение параметра а попадает в интервал

При этом необходимо отметить одно обстоятельство. Ранее мы неоднократно рассматривали вероятность попадания случайной величины в заданный неслучайный интервал. Здесь дело обстоит иначе: величина а не случайна, зато случаен интервал / р. Случайно его положение на оси абсцисс, определяемое его центром а ; случайна вообще и длина интервала 2s, так как величина s вычисляется, как правило, по опытным данным. Поэтому в данном случае лучше будет толковать величину р не как вероятность «попадания» точки а в интервал / р, а как вероятность того, что случайный интервал / р накроет точку а (рис. 14.3.1).

Рис. 14.3.1

Вероятность р принято называть доверительной вероятностью , а интервал / р - доверительным интервалом . Границы интервала If. а х =а- s и а 2 = а + а называются доверительными границами.

Дадим еще одно истолкование понятию доверительного интервала: его можно рассматривать как интервал значений параметра а, совместимых с опытными данными и не противоречащих им. Действительно, если условиться считать событие с вероятностью а = 1-р практически невозможным, то те значения параметра а, для которых а - а > s, нужно признать противоречащими опытным данным, а те, для которых |а - а a t na 2 .

Пусть для параметра а имеется несмещенная оценка а. Если бы нам был известен закон распределения величины а , задача нахождения доверительного интервала была бы весьма проста: достаточно было бы найти такое значение s, для которого

Затруднение состоит в том, что закон распределения оценки а зависит от закона распределения величины X и, следовательно, от его неизвестных параметров (в частности, и от самого параметра а).

Чтобы обойти это затруднение, можно применить следующий грубо приближенный прием: заменить в выражении для s неизвестные параметры их точечными оценками. При сравнительно большом числе опытов п (порядка 20...30) этот прием обычно дает удовлетворительные по точности результаты.

В качестве примера рассмотрим задачу о доверительном интервале для математического ожидания.

Пусть произведено п X, характеристики которой - математическое ожидание т и дисперсия D - неизвестны. Для этих параметров получены оценки:

Требуется построить доверительный интервал / р, соответствующий доверительной вероятности р, для математического ожидания т величины X.

При решении этой задачи воспользуемся тем, что величина т представляет собой сумму п независимых одинаково распределенных случайных величин X h и согласно центральной предельной теореме при достаточно большом п ее закон распределения близок к нормальному. На практике даже при относительно небольшом числе слагаемых (порядка 10...20) закон распределения суммы можно приближенно считать нормальным. Будем исходить из того, что величина т распределена по нормальному закону. Характеристики этого закона - математическое ожидание и дисперсия - равны соответственно т и

(см. главу 13 подраздел 13.3). Предположим, что величина D нам известна и найдем такую величину Ер, для которой

Применяя формулу (6.3.5) главы 6, выразим вероятность в левой части (14.3.5) через нормальную функцию распределения

где - среднее квадратичное отклонение оценки т.

Из уравнения

находим значение Sp:

где arg Ф* (х) - функция, обратная Ф* (х), т.е. такое значение аргумента, при котором нормальная функция распределения равна х.

Дисперсия D, через которую выражена величина а 1П, нам в точности не известна; в качестве ее ориентировочного значения можно воспользоваться оценкой D (14.3.4) и положить приближенно:

Таким образом, приближенно решена задача построения доверительного интервала, который равен:

где gp определяется формулой (14.3.7).

Чтобы избежать при вычислении s p обратного интерполирования в таблицах функции Ф* (л), удобно составить специальную таблицу (табл. 14.3.1), где приводятся значения величины

в зависимости от р. Величина (р определяет для нормального закона число средних квадратических отклонений, которое нужно отложить вправо и влево от центра рассеивания для того, чтобы вероятность попадания в полученный участок была равна р.

Через величину 7 р доверительный интервал выражается в виде:

Таблица 14.3.1

Пример 1. Проведено 20 опытов над величиной X; результаты приведены в табл. 14.3.2.

Таблица 14.3.2

Требуется найти оценку от для математического ожидания от величины X и построить доверительный интервал, соответствующий доверительной вероятности р = 0,8.

Решение. Имеем:

Выбрав за начало отсчета л: = 10, по третьей формуле (14.2.14) находим несмещенную оценку D :

По табл. 14.3,1 находим

Доверительные границы:

Доверительный интервал:

Значения параметра т, лежащие в этом интервале, являются совместимыми с опытными данными, приведенными в табл. 14.3.2.

Аналогичным способом может быть построен доверительный интервал и для дисперсии.

Пусть произведено п независимых опытов над случайной величиной X с неизвестными параметрами от и Л, и для дисперсии D получена несмещенная оценка:

Требуется приближенно построить доверительный интервал для дисперсии.

Из формулы (14.3.11) видно, что величина D представляет собой

сумму п случайных величин вида . Эти величины не являются

независимыми, так как в любую из них входит величина т, зависящая от всех остальных. Однако можно показать, что при увеличении п закон распределения их суммы тоже приближается к нормальному. Практически при п = 20...30 он уже может считаться нормальным.

Предположим, что это так, и найдем характеристики этого закона: математическое ожидание и дисперсию. Так как оценка D - несмещенная, то М[D] = D.

Вычисление дисперсии D D связано со сравнительно сложными выкладками, поэтому приведем ее выражение без вывода:

где ц 4 - четвертый центральный момент величины X.

Чтобы воспользоваться этим выражением, нужно подставить в него значения ц 4 и D (хотя бы приближенные). Вместо D можно воспользоваться его оценкой D . В принципе четвертый центральный момент тоже можно заменить его оценкой, например величиной вида:

но такая замена даст крайне невысокую точность, так как вообще при ограниченном числе опытов моменты высокого порядка определяются с большими ошибками. Однако на практике часто бывает, что вид закона распределения величины X известен заранее: неизвестны лишь его параметры. Тогда можно попытаться выразить ц 4 через D.

Возьмем наиболее часто встречающийся случай, когда величина X распределена по нормальному закону. Тогда ее четвертый центральный момент выражается через дисперсию (см. главу 6 подраздел 6.2);

и формула (14.3.12) дает или

Заменяя в (14.3.14) неизвестное D его оценкой D , получим: откуда

Момент ц 4 можно выразить через D также и в некоторых других случаях, когда распределение величины X не является нормальным, но вид его известен. Например, для закона равномерной плотности (см. главу 5) имеем:

где (а, Р) - интервал, на котором задан закон.

Следовательно,

По формуле (14.3.12) получим: откуда находим приближенно

В случаях, когда вид закона распределения величины 26 неизвестен, при ориентировочной оценке величины а /} рекомендуется все же пользоваться формулой (14.3.16), если нет специальных оснований считать, что этот закон сильно отличается от нормального (обладает заметным положительным или отрицательным эксцессом).

Если ориентировочное значение а /} тем или иным способом получено, то можно построить доверительный интервал для дисперсии аналогично тому, как мы строили его для математического ожидания:

где величина в зависимости от заданной вероятности р находится по табл. 14.3.1.

Пример 2. Найти приближенно 80%-й доверительный интервал для дисперсии случайной величины X в условиях примера 1, если известно, что величина X распределена по закону, близкому к нормальному.

Решение. Величина остается той же, что в табл. 14.3.1:

По формуле (14.3.16)

По формуле (14.3.18) находим доверительный интервал:

Соответствующий интервал значений среднего квадратичного отклонения: (0,21; 0,29).

14.4. Точные методы построения доверительных интервалов для параметров случайной величины, распределенной по нормальному закону

В предыдущем подразделе мы рассмотрели грубо приближенные методы построения доверительных интервалов для математического ожидания и дисперсии. Здесь мы дадим представление о точных методах решения той же задачи. Подчеркнем, что для точного нахождения доверительных интервалов совершенно необходимо знать заранее вид закона распределения величины X, тогда как для применения приближенных методов это не обязательно.

Идея точных методов построения доверительных интервалов сводится к следующему. Любой доверительный интервал находится из условия, выражающего вероятность выполнения некоторых неравенств, в которые входит интересующая нас оценка а. Закон распределения оценки а в общем случае зависит от неизвестных параметров величины X. Однако иногда удается перейти в неравенствах от случайной величины а к какой-либо другой функции наблюденных значений Х п Х 2 , ..., X п. закон распределения которой не зависит от неизвестных параметров, а зависит только от числа опытов и и от вида закона распределения величины X. Такого рода случайные величины играют большую роль в математической статистике; они наиболее подробно изучены для случая нормального распределения величины X.

Например, доказано, что при нормальном распределении величины X случайная величина

подчиняется так называемому закону распределения Стъюдента с п - 1 степенями свободы; плотность этого закона имеет вид

где Г (х) - известная гамма-функция:

Доказано также, что случайная величина

имеет «распределение % 2 » с п - 1 степенями свободы (см. главу 7), плотность которого выражается формулой

Не останавливаясь на выводах распределений (14.4.2) и (14.4.4), покажем, как их можно применить при построении доверительных интервалов для параметров ти D .

Пусть произведено п независимых опытов над случайной величиной X, распределенной по нормальному закону с неизвестными параметрами тиО. Для этих параметров получены оценки

Требуется построить доверительные интервалы для обоих параметров, соответствующие доверительной вероятности р.

Построим сначала доверительный интервал для математического ожидания. Естественно этот интервал взять симметричным относительно т ; обозначим s p половину длины интервала. Величину s p нужно выбрать так, чтобы выполнялось условие

Попытаемся перейти в левой части равенства (14.4.5) от случайной величины т к случайной величине Т, распределенной по закону Стьюдента. Для этого умножим обе части неравенства |m-w?|

на положительную величину: или, пользуясь обозначением (14.4.1),

Найдем такое число / р, что Величина / р найдется из условия

Из формулы (14.4.2) видно, что (1) - четная функция, поэтому (14.4.8) дает

Равенство (14.4.9) определяет величину / р в зависимости от р. Если иметь в своем распоряжении таблицу значений интеграла

то величину / р можно найти обратным интерполированием в таблице. Однако удобнее составить заранее таблицу значений / р. Такая таблица дается в приложении (табл. 5). В этой таблице приведены значения в зависимости от доверительной вероятности р и числа степеней свободы п - 1. Определив / р по табл. 5 и полагая

мы найдем половину ширины доверительного интервала / р и сам интервал

Пример 1. Произведено 5 независимых опытов над случайной величиной X, распределенной нормально с неизвестными параметрами т и о. Результаты опытов приведены в табл. 14.4.1.

Таблица 14.4.1

Найти оценку т для математического ожидания и построить для него 90%-й доверительный интервал / р (т.е. интервал, соответствующий доверительной вероятности р = 0,9).

Решение. Имеем:

По таблице 5 приложения для п - 1 = 4 и р = 0,9 находим откуда

Доверительный интервал будет

Пример 2. Для условий примера 1 подраздела 14.3, предполагая величину X распределенной нормально, найти точный доверительный интервал.

Решение. По таблице 5 приложения находим при п - 1 = 19ир =

0,8 / р =1,328; отсюда

Сравнивая с решением примера 1 подраздела 14.3 (е р = 0,072), убеждаемся, что расхождение весьма незначительно. Если сохранить точность до второго знака после запятой, то доверительные интервалы, найденные точным и приближенным методами, совпадают:

Перейдем к построению доверительного интервала для дисперсии. Рассмотрим несмещенную оценку дисперсии

и выразим случайную величину D через величину V (14.4.3), имеющую распределение х 2 (14.4.4):

Зная закон распределения величины V, можно найти интервал / (1 , в который она попадает с заданной вероятностью р.

Закон распределения k n _ x {v) величины I 7 имеет вид, изображенный на рис. 14.4.1.

Рис. 14.4.1

Возникает вопрос: как выбрать интервал / р? Если бы закон распределения величины V был симметричным (как нормальный закон или распределение Стьюдента), естественно было бы взять интервал /р симметричным относительно математического ожидания. В данном случае закон к п _ х (v) несимметричен. Условимся выбирать интервал /р так, чтобы вероятности выхода величины V за пределы интервала вправо и влево (заштрихованные площади на рис. 14.4.1) были одинаковы и равны

Чтобы построить интервал / р с таким свойством, воспользуемся табл. 4 приложения: в ней приведены числа у} такие, что

для величины V, имеющей х 2 -распределение с г степенями свободы. В нашем случае г = п - 1. Зафиксируем г = п - 1 и найдем в соответствующей строке табл. 4 два значения х 2 - одно, отвечающее вероятности другое - вероятности Обозначим эти

значения у 2 и xl ? Интервал имеет у 2 , своим левым, а у ~ правым концом.

Теперь найдем по интервалу / р искомый доверительный интервал /|, для дисперсии с границами D, и D 2 , который накрывает точку D с вероятностью р:

Построим такой интервал / (, = (?> ь А), который накрывает точку D тогда и только тогда, когда величина V попадает в интервал / р. Покажем, что интервал

удовлетворяет этому условию. Действительно, неравенства равносильны неравенствам

а эти неравенства выполняются с вероятностью р. Таким образом, доверительный интервал для дисперсии найден и выражается формулой (14.4.13).

Пример 3. Найти доверительный интервал для дисперсии в условиях примера 2 подраздела 14.3, если известно, что величинаX распределена нормально.

Решение. Имеем . По таблице 4 приложения

находим при г = п - 1 = 19

По формуле (14.4.13) находим доверительный интервал для дисперсии

Соответствующий интервал для среднего квадратичного отклонения: (0,21; 0,32). Этот интервал лишь незначительно превосходит полученный в примере 2 подраздела 14.3 приближенным методом интервал (0,21; 0,29).

  • На рисунке 14.3.1 рассматривается доверительный интервал, симметричный относительно а. Вообще, как мы увидим дальше, это необязательно.

Доверительный интервал для математического ожидания - это такой вычисленный по данным интервал, который с известной вероятностью содержит математическое ожидание генеральной совокупности. Естественной оценкой для математического ожидания является среднее арифметическое её наблюденных значений. Поэтому далее в течение урока мы будем пользоваться терминами "среднее", "среднее значение". В задачах рассчёта доверительного интервала чаще всего требуется ответ типа "Доверительный интервал среднего числа [величина в конкретной задаче] находится от [меньшее значение] до [большее значение]". С помощью доверительного интервала можно оценивать не только средние значения, но и удельный вес того или иного признака генеральной совокупности. Средние значения, дисперсия, стандартное отклонение и погрешность, через которые мы будем приходить к новым определениям и формулам, разобраны на уроке Характеристики выборки и генеральной совокупности .

Точечная и интервальная оценки среднего значения

Если среднее значение генеральной совокупности оценивается числом (точкой), то за оценку неизвестной средней величины генеральной совокупности принимается конкретное среднее, которое рассчитано по выборке наблюдений. В таком случае значение среднего выборки - случайной величины - не совпадает со средним значением генеральной совокупности. Поэтому, указывая среднее значение выборки, одновременно нужно указывать и ошибку выборки. В качестве меры ошибки выборки используется стандартная ошибка , которая выражена в тех же единицах измерения, что и среднее. Поэтому часто используется следующая запись: .

Если оценку среднего требуется связать с определённой вероятностью, то интересующий параметр генеральной совокупности нужно оценивать не одним числом, а интервалом. Доверительным интервалом называют интервал, в котором с определённой вероятностью P находится значение оцениваемого показателя генеральной совокупности. Доверительный интервал, в котором с вероятностью P = 1 - α находится случайная величина , рассчитывается следующим образом:

,

α = 1 - P , которое можно найти в приложении к практически любой книге по статистике.

На практике среднее значение генеральной совокупности и дисперсия не известны, поэтому дисперсия генеральной совокупности заменяется дисперсией выборки , а среднее генеральной совокупности - средним значением выборки . Таким образом, доверительный интервал в большинстве случаев рассчитывается так:

.

Формулу доверительного интервала можно использовать для оценки среднего генеральной совокупности, если

  • известно стандартное отклонение генеральной совокупности;
  • или стандартное отклонение генеральной совокупности не известно, но объём выборки - больше 30.

Среднее значение выборки является несмещённой оценкой среднего генеральной совокупности . В свою очередь, дисперсия выборки не является несмещённой оценкой дисперсии генеральной совокупности . Для получения несмещённой оценки дисперсии генеральной совокупности в формуле дисперсии выборки объём выборки n следует заменить на n -1.

Пример 1. Собрана информация из 100 случайно выбранных кафе в некотором городе о том, что среднее число работников в них составляет 10,5 со стандартным отклонением 4,6. Определить доверительный интервал 95% числа работников кафе.

где - критическое значение стандартного нормального распределения для уровня значимости α = 0,05 .

Таким образом, доверительный интервал 95% среднего числа работников кафе составил от 9,6 до 11,4.

Пример 2. Для случайной выборки из генеральной совокупности из 64 наблюдений вычислены следующие суммарные величины:

сумма значений в наблюдениях ,

сумма квадратов отклонения значений от среднего .

Вычислить доверительный интервал 95 % для математического ожидания.

вычислим стандартное отклонение:

,

вычислим среднее значение:

.

Подставляем значения в выражение для доверительного интервала:

где - критическое значение стандартного нормального распределения для уровня значимости α = 0,05 .

Получаем:

Таким образом, доверительный интервал 95% для математического ожидания данной выборки составил от 7,484 до 11,266.

Пример 3. Для случайной выборки из генеральной совокупности из 100 наблюдений вычислено среднее значение 15,2 и стандартное отклонение 3,2. Вычислить доверительный интервал 95 % для математического ожидания, затем доверительный интервал 99 %. Если мощность выборки и её вариация остаются неизменными, а увеличивается доверительный коэффициент, то доверительный интервал сузится или расширится?

Подставляем данные значения в выражение для доверительного интервала:

где - критическое значение стандартного нормального распределения для уровня значимости α = 0,05 .

Получаем:

.

Таким образом, доверительный интервал 95% для среднего данной выборки составил от 14,57 до 15,82.

Вновь подставляем данные значения в выражение для доверительного интервала:

где - критическое значение стандартного нормального распределения для уровня значимости α = 0,01 .

Получаем:

.

Таким образом, доверительный интервал 99% для среднего данной выборки составил от 14,37 до 16,02.

Как видим, при увеличении доверительного коэффициента увеличивается также критическое значение стандартного нормального распределения, а, следовательно, начальная и конечная точки интервала расположены дальше от среднего, и, таким образом, доверительный интервал для математического ожидания увеличивается.

Точечная и интервальная оценки удельного веса

Удельный вес некоторого признака выборки можно интерпретировать как точечную оценку удельного веса p этого же признака в генеральной совокупности. Если же эту величину нужно связать с вероятностью, то следует рассчитать доверительный интервал удельного веса p признака в генеральной совокупности с вероятностью P = 1 - α :

.

Пример 4. В некотором городе два кандидата A и B претендуют на пост мэра. Случайным образом были опрошены 200 жителей города, из которых 46% ответили, что будут голосовать за кандидата A , 26% - за кандидата B и 28% не знают, за кого будут голосовать. Определить доверительный интервал 95% для удельного веса жителей города, поддерживающих кандидата A .

Предлагают незаменимые и удобные методы для различных статистических расчетов и анализа. Одной из таких особенностей является интервал доверия, который используется для выражения степени неопределенности, связанной с исследованием. Доверительные интервалы в excel — это оценка событий в сочетании с верификацией вероятностей. Они обеспечивают вероятный диапазон выборочной пропорции или выборочного среднего от истинной доли / среднего, найденного в популяции и отображаются как: оценка +/- погрешность.

В любом опросе и исследовании доверительные интервалы — отличный способ понять роль ошибок выборки в средних процентных показателях. Для любого опроса, поскольку исследователи всегда лишь изучают долю из более крупного расчета, в их оценках есть неопределенность, из-за чего будут ошибки выборки.

Доверительный интервал (ДИ) дает понимание о том, насколько может колебаться. Он представляет собой диапазон значений, которые одинаково центрированы от известного среднего числа выборки. Чем выше уровень доверия (в процентах), тем меньше интервал, более точными будут результаты. Исследование образцов с большей изменчивостью или большим стандартным отклонением порождает более широкие доверительные интервалы в excel.

Существует соотношение обратного квадратного корня между ДИ и размерами выборки. Меньшие размеры генерируют более широкие ДИ, поэтому для получения более точных оценок или сокращения пороговой погрешности наполовину, необходимо примерно в четыре раза увеличить размер выборки.

Построение среднего значения совокупности

Чтобы построить доверительный интервал для среднего значения совокупности, предоставленной вероятности и размера выборки, нужно применить функцию "ДОВЕРИТ" в Excel, которая использует нормальное распределение для вычисления значения доверия. Предположим, исследователи случайно выбрали 100 человек, измерили их вес и установили средний в 76 кг. Если нужно узнать средний показатель для людей в конкретном городе, маловероятно, что он для более крупной группы будет иметь такое же среднее значение, как и выборка, состоящая всего из 100 человек.

Гораздо более вероятно, что выборочное среднее в 76 кг может быть приблизительно равно (неизвестному) популяционному среднему, и нужно знать, насколько точным является оценочный ответ. Эта неопределенность, связанная с оценкой интервалов, называется уровнем достоверности, обычно 95%. Функция "ДОВЕРИТ" (альфа, сигма, n) возвращает значение, используемое для построения ДИ среднего числа совокупности. Предполагается, что данные выборок соответствуют стандартным нормальным распределениям с известной сигмой стандартного отклонения, а размер выборки равен n. Перед тем как рассчитать доверительный интервал в excel 95% уровня, принимают альфу как 1 - 0,95 = 0,05.

Форматы функции CONFIDENCE

Функция CONFIDENCE или ДОВЕРИТ, определяется пределами доверия — это нижняя и верхняя границы ДИ и являются 95% показателями. Например, при изучении предпочтении, было обнаружено, что 70% людей предпочитают Боржоми, по сравнению с Пепси при ДИ в 3% и уровнем доверия 95%, тогда существует 95-процентная вероятность того, что истинная пропорция составляет от 67 до 73%.

Функции "ДОВЕРИТ" отображаются под различными синтаксисами в разных версиях Excel. Например, Excel 2010 имеет две функции: "ДОВЕРИТ.НОРМ" и "ДОВЕРИТ.T", которые помогают вычислять ширину "ДИ. ДОВЕРИТ.НОРМ" используется, когда известно стандартное отклонение измерения. В противном случае применяется "ДОВЕРИТ.T", оценка осуществляется по данным выборки. Доверительные интервалы в excel до 2010 года имели только функцию "ДОВЕРИТ". Его аргументы и результаты были аналогичными аргументам функции "ДОВЕРИТ.НОРМ".

Первый по-прежнему доступен в более поздних версиях Excel для обеспечения совместимости. #NUM! Error — происходит, если альфа меньше или равна 0, или больше или равна 0. Данное стандартное отклонение меньше или равно 0. Указанный размер аргумента меньше единицы. #СТОИМОСТЬ! Error — происходит, если любой из предоставленных аргументов не является числовым.

"ДОВЕРИТ." классифицируется по функциям статистики и будет высчитывать и возвращать ДИ для среднего значения. Доверительные интервалы в excel могут быть чрезвычайно полезными для финансового анализа. Как аналитик, "ДОВЕРИТ." помогает в прогнозировании и корректировке для широкого круга целей, путем оптимизации принятия финансовых решений. Это выполняется с применением графического отображения данных в наборе переменных.

Аналитики могут принимать более эффективные решения на основе статистической информации, предоставляемой нормальным распределением. Например, они могут найти связь между полученным доходом и расходами, затрачиваемыми на предметы роскоши. Чтобы вычислить ДИ для среднего значения совокупности, возвращаемое доверительное значение, должно быть добавлено и вычтено из среднего значения выборки. Например, для среднего значения выборки x: Доверительный интервал = x ± ДОВЕРИТ.

Пример расчета доверительного интервала в excel - предположим, что нам даны следующие данные:

  1. Уровень значимости: 0,05.
  2. Стандартное отклонение населения: 2,5.
  3. Размер выборки: 100.

Функция доверительного интервала Excel используется для расчета ДИ со значением 0,05 (т. е. уровень достоверности 95%) для среднего времени выборки для изучения времени коммутации в офисе на 100 человек. Среднее значение образца составляет 30 минут, а стандартное отклонение составляет 2,5 минуты. Доверительный интервал составляет 30 ± 0,48999, что соответствует диапазону 29,510009 и 30,48999 (минут).

Интервалы и нормальное распределение

Наиболее знакомое использование доверительного интервала, означает «погрешность ошибок». В опросах погрешность составляет плюс или минус 3%. ДИ полезны в контекстах, которые выходят за рамки этой простой ситуации. Они могут использоваться с ненормальными распределениями, которые сильно искажены. Для вычисления прогноза доверительного интервала в excel требуются следующие строительные блоки:

  1. Среднее значение.
  2. Стандартное отклонение наблюдений.
  3. Число опросов в выборке.
  4. Уровень доверия, который нужно применить к ДИ.

Перед тем как построить доверительный интервал в excel, изучают его вокруг среднего значения выборки, начинают с принятия решения о том, какой будет принят процент других средств выборки, если они были собраны и рассчитаны в этом интервале. Если это так, то 95% возможных образцов будут захвачены ДИ с 1,96 стандартных отклонений выше и ниже образца.

Стандартная ошибка среднего

Допустимый интервал или погрешность не принимаются с учетом ошибки измерения или смещения обзора, поэтому фактическая неопределенность может быть выше, чем указана. Перед тем как посчитать доверительный интервал в excel, расчет должен быть обеспечен хорошим сбором данных, надежными измерительными системами и удовлетворительным дизайном обследования.

Доверительные интервалы для среднего значения могут быть получены несколькими способами: с помощью SigmaXL, описательной статистики, гистограмм,1-образного t-теста и интервалов доверия, односторонних диаграмм ANOVA и Multi-Vari. Чтобы графически иллюстрировать ДИ для среднего значения «Удовлетворенность», создают диаграмму Multi-Vari (с 95% CI Mean Options) с использованием данных Customer Data.xls. Точки соответствуют отдельным данным. Маркеры показывают максимальный доверительный предел 99%, и средний 95%-ый предел.

Теперь тестирование гипотезы будут использоваться для более точных средних оценок удовлетворенности и определения результатов.

Доверительные интервалы очень важны для понимания полученных данных и принятия решений по ним. Чтобы рассчитать ДИ для дискретной пропорции, используют SigmaXL> Шаблоны и калькуляторы> Основные статистические шаблоны> 1 интервал Перед тем как найти доверительный интервал в excel, выполняют следующие действия:

  1. Открыть Client Data.xls.
  2. Нажать вкладку «Лист 1» или F4, чтобы активировать последний рабочий лист. Нажать SigmaXL> Статистические инструменты> Описательная статистика.
  3. Установить флажок «Использовать всю таблицу данных».
  4. Нажать «Далее».
  5. Выбрать «Общая удовлетворенность», нажать «Числовые переменные данных» (Y).
  6. Выбрать «Тип клиента», нажать «Категория группы» (X1). По умолчанию уровень доверия 95%.
  7. Нажать «ОК».

Обратить внимание, что доверительный интервал в 95% означает: в среднем истинный параметр популяции (средний, стандартное отклонение или пропорция) будет находиться в интервале 19 раз из 20. Будет представлен пользователю: 95%-ый доверительный интервал для каждого отсчета. Среднее значение (95% CI). Доверительный интервал 95% для стандартного отклонения (95% CI Sigma — не путать это с уровнем качества Sigma Process).

Статистика и уровни доверия

Доверительный интервал не является числом, в котором истинное значение параметра найдено с точностью. Действительно, случайная величина теоретически может принимать все возможные значения в рамках законов физики. Доверительный интервал — это фактически область, в которой истинное (неизвестное) значение параметра, изучаемого в популяции, наиболее вероятно с вероятностью, которую выбирают. При его использовании интервал основан на вычислении доверительного порога, погрешности и коэффициента запаса.

Перед тем как определить доверительный интервал в excel, определяют эти элементы, которые зависят от параметров:

  1. Изменчивости измеряемых характеристик.
  2. Размера выборки: чем она больше, тем более высокая точность.
  3. Уровень доверия - s.

Уровень доверия представляет собой гарантированную уверенность. Например, с уровнем достоверности 90%, это означает, что 10% риск будет неправильным. Как правило, хорошей практикой является выбор достоверности в 95%. Таким образом, максимальный доверительный уровень является большим, чем больше размер выборки. Маржинальный коэффициент является индикатором, выведенным непосредственно из доверительного порога. В таблице приведены некоторые примеры для наиболее распространенных значений.

Уровень доверия s

Коэффициент маржи при n> 30

В случае когда нужно оценить среднее значение популяции из ее выборки, определяют доверительный интервал. Он зависит от размера выборки и закона переменной. Формула для расчета доверительного интервала в excel выглядит следующим образом:

  1. Нижняя граница интервала = средний пробег — коэффициент поля * стандартную ошибку.
  2. Верхняя граница диапазона = примерный средний + коэффициент поля * стандартную ошибку.
  3. Значение t будет зависеть от размера выборки: n> 30: коэффициент запаса нормального закона, называемый z. n<30: коэффициент запаса, называемый t для n-1.

В этой ситуации соответствующие единицы сами являются средними значениями. Исследователю необходимо будет знать стандартное отклонение не от первоначальных и индивидуальных наблюдений, а от средств, которые рассчитываются на основе них. Это отклонение имеет название — стандартная ошибка среднего.

Представления изменчивости данных используются на графиках, чтобы указать на ошибку или неопределенность в измерении. Они дают общее представление о том, насколько точным является измерение, или, наоборот, насколько далеки от сообщенного истинного значение и оформляются в виде полос ошибок. Они представляют собой одно стандартное отклонение неопределенности, одну стандартную ошибку или определенный доверительный интервал (например, интервал 95%). Эти величины не совпадают, поэтому выбранная мера должна быть указана в графике или в тексте.

Полосы ошибок могут использоваться для сравнения двух величин, если выполняются статистически значимые условия. Строки ошибок указывают на приемлемость соответствия функции, то есть насколько хорошо она описывает данные. Научные работы в экспериментальных науках, включают в себя ошибки на всех графиках, хотя практика несколько отличается и каждый исследователь имеет собственный стиль ошибок.

Полосы ошибок могут использоваться как интерфейс прямой манипуляции для управления вероятностными алгоритмами для приблизительного вычисления. Полосы ошибок могут быть выражены в знаке плюс-минус(±). Плюс - верхний предел, а минус - нижний предел ошибки.

Для правильного определения ДИ существуют онлайн-калькуляторы, которые значительно упрощают работу. Начинают процесс определения с отбора данных. Он является основой всех исследований. Надежная выборка помогает уверенно принимать бизнес-решения. Первый вопрос, который нужно решить — правильное определение целевой группы, он имеет определяющее значение. Если исследователь проводит опрос с людьми вне этой группы - невозможно успешно выполнить задачу. Следующий шаг — решить, сколько людей нужно для проведения собеседования.

Специалисты знают, что небольшая репрезентативная выборка будет отражать мнения и поведение группы, из которой она была составлена. Чем больше образец, тем точнее он представляет целевую группу. Тем не менее скорость улучшения точности уменьшается по мере увеличения размера выборки. Например, увеличение с 250 до 1000 удваивает точность. Принимают решение о размере выборки на основе таких факторов, как: доступное время, бюджет и необходимая степень точности.

Существует три фактора, которые определяют размер ДИ для этого уровня достоверности:

  • размер выборки;
  • процентная доля выборки;
  • размер популяции.

Если 99% участников опроса сказали «Да» и 1% сказали «Нет», вероятность ошибки мала, независимо от размера выборки. Однако если проценты составляют 51 и 49%, вероятность ошибки намного выше. Легче быть уверенным в крайних ответах, чем в средних. При определении размера выборки, необходимого для заданного уровня точности, нужно использовать наихудший процент (50%).

Ниже показана формула расчета доверительного интервала в excel размера выборки онлайн-калькулятора.

Расчеты доверительного интервала предполагают, что есть подлинная случайная выборка соответствующего населения. Если опрос не является случайным, нельзя полагаться на интервалы. Неслучайные выборки обычно возникают из-за недостатков в процедуре.

Создание линейных диаграмм

Создание графика доверительного интервала в Excel относительно простое. Сначала создают свою линейную диаграмму. Затем с выбранным рядом выбирают «Инструменты диаграммы»> «Макет»> «Панель ошибок»> «Дополнительные параметры панели». В появившемся всплывающем меню можно либо выбрать положительные или отрицательные панели ошибок, либо и то, и другое. Можно выбрать стиль и выбрать сумму, которую нужно отобразить. Это может быть фиксированное значение, процент, стандартное отклонение или настраиваемый диапазон.

Если у данных есть стандартное отклонение по умолчанию для каждой точки, выбирают пользовательский и нажимают кнопку «Определить значение». Затем появляется другое всплывающее меню и можно выбрать диапазон ячеек как для положительных, так и для отрицательных панелей.

  1. Подготовить данные. Сначала в дополнение к средним значениям, понадобится расчет стандартного отклонения (или ошибки).
  2. Затем в строке 4 нужно рассчитать верхний предел группы, то есть для B4 расчет будет: =B2+B3 В строке 5 нужно рассчитать нижний предел диапазона, т. е Для B5 расчет будет: =B2-B4
  3. Создать график. Выделите строки 1, 2, 4 и 5 таблицы, а затем нажать «Вставить»> «График»> «Линейная диаграмма». Excel создаст линейную диаграмму.
  4. Удалить легенду и линии сетки.
  5. Затем щелкнуть правой кнопкой мыши верхнюю группу диапазонов и выбрать «Изменить тип диаграммы».
  6. Отформатировать доверительные диапазоны. Чтобы закончить диаграмму просто отформатировать верхнюю серию с голубым заполнением (в соответствии с синей линией), а нижнюю серию — белой заливкой.

В этой диаграмме легко увидеть пределы ошибок, однако если много данных, вид будет беспорядочный. С первого взгляда доверительный предел гораздо более очевидный, учитывая среднее значение выборки, и он будет становиться все более жестким по мере увеличения количества выборок

Анализ случайных погрешностей основывается на теории случайных ошибок, дающей возможность с определенной гарантией вычислить действительное значение измеренной величины и оценить возможные ошибки.

Основу теории случайных ошибок составляют следующие предположения:

при большом числе измерений случайные погрешности одинаковой величины, но разного знака встречаются одинаково часто;

большие погрешности встречаются реже, чем малые (вероятность появления погрешности уменьшается с ростом ее величины);

при бесконечно большом числе измерении истинное значение измеряемой величины равно среднеарифметическому значению всех результатов измерений;

появление того или иного результата измерения как случайного события описывается нормальным законом распределения.

На практике различают генеральную и выборочную совокупность измерений.

Под генеральной совокупностью подразумевают все множество возможных значений измерений или возможных значений погрешностей
.

Для выборочной совокупности число измерений ограничено, и в каждом конкретном случае строго определяется. Считают, что, если
, то среднее значение данной совокупности измеренийдостаточно приближается к его истинному значению.

1. Интервальная оценка с помощью доверительной вероятности

Для большой выборки и нормального закона распределения общей оценочной характеристикой измерения являются дисперсия
и коэффициент вариации:

;
. (1.1)

Дисперсия характеризует однородность измерения. Чем выше
, тем больше разброс измерений.

Коэффициент вариации характеризует изменчивость. Чем выше , тем больше изменчивость измерений относительно средних значений.

Для оценки достоверности результатов измерений вводятся в рассмотрение понятия доверительного интервала и доверительной вероятности.

Доверительным называется интервал значений , в который попадает истинное значение измеряемой величины с заданной вероятностью.

Доверительной вероятностью (достоверностью) измерения называется вероятность того, что истинное значение измеряемой величины попадает в данный доверительный интервал, т.е. в зону
. Эта величина определяется в долях единицы или в процентах

,

где
- интегральная функция Лапласа (табл.1.1 )

Интегральная функция Лапласа определяется следующим выражением:

.

Аргументом этой функции является гарантийный коэффициент :

Таблица 1.1

Интегральная функция Лапласа

Если же на основе определенных данных установлена доверительная вероятность (часто ее принимают равной
), то устанавливаетсяточность измерений (доверительный интервал
) на основе соотношения

.

Половина доверительного интервала равна

, (1.3)

где
- аргумент функции Лапласа, если
(табл.1.1 );

- функции Стьюдента, если
(табл.1.2 ).

Таким образом, доверительный интервал характеризует точность измерения данной выборки, а доверительная вероятность - достоверность измерения.

Пример

Выполнено
измерений прочности дорожного покрытия участка автомобильной дороги при среднем модуле упругости
и вычисленном значении среднеквадратического отклонения
.

Необходимо определить требуемую точность измерений для разных уровней доверительной вероятности
, приняв значения потабл.1.1 .

В этом случае соответственно |

Следовательно, для данного средства и метода измерений доверительный интервал возрастает примерно в раза, если увеличитьтолько на
.



Публикации по теме