Очередей теория. Форум студентов мти - показать сообщение отдельно - основы сервисологии Метод дополнительного события в теории очередей

Теория массового обслуживания (теория очередей)

Модель теории очередей используется для определения оптимального числа каналов обслуживания по отношению к потребности в них. К ситуациям, в которых модели теории очередей могут быть полезны, можно отнести звонки людей через телефонную станцию, выход в Интернет через провайдера, обслуживание покупателей в магазине или банке, разгрузка грузовиков на транспортном терминале. В любом случае принципиальная проблема заключается в уравновешивании расходов на дополнительные каналы обслуживания (больше оборудования на АТС, больше модемов у провайдера, больше кассиров и клерков, больше людей и техники для разгрузки грузовиков) и потерь от обслуживания на уровне ниже оптимального (потребители обращаются к другой компании, грузовики стоят под разгрузкой вместо использования их по прямому назначению).

Управление запасами

Модели управления запасами используется для определения времени размещения заказов на ресурсы и их количества, а также массы готовой продукции на складах. Любая организация должна поддерживать некоторый уровень запасов во избежание задержек на производстве и в сбыте. Цель данной модели - сведение к минимуму отрицательных последствий накопления запасов, что выражается в определенных издержках.

Поддержание высокого уровня запасов избавляет от потерь, обусловливаемых их нехваткой. Закупка в больших количествах материалов, необходимых для создания запасов, во многих случаях сводит к минимуму издержки на размещение заказов, поскольку фирма может получить соответствующие скидки и снизить объем «бумажной работы». Однако эти потенциальные выгоды перекрываются дополнительными издержками типа расходов на хранение, перегрузку, затрат на страхование, потерь от порчи, воровства и дополнительных налогов. Кроме того, руководство должно учитывать возможность связывания оборотных средств избыточными запасами, что препятствует вложению капитала в приносящие прибыль акции, облигации и др.

Может быть выбрана одна из разновидностей моделей управления запасами: модель с фиксированным количеством, модель с фиксированным временем и др.

Сетевое планирование

Модели сетевого планирования используются при управлении сложными многоэтапными проектами (строительство здания, разработка нового продукта и т.п.) Методы сетевого планирования позволяют оптимизировать выполнение проекта, определить и улучшить характеристики его критических этапов и т.п.

Имитационное моделирование

Все описанные выше модели подразумевают применение имитации в широком смысле, поскольку все они являются заменителями реальности. В узком смысле, имитация состоит в использовании некоего устройства для имитации реальной системы для того, чтобы исследовать и понять ее свойства, поведение и характеристики. Имитация используется в ситуациях, слишком сложных для математически методов типа линейного программирования. Это может быть связано с чрезмерно большим числом переменных, трудностью математического анализа определенных зависимостей между переменными или высоким уровнем неопределенности. Примером может служить метод Монте-Карло .

Экономический анализ

Экономический анализ вбирает в себя почти все методы оценки издержек и экономических выгод, а также относительной рентабельности деятельности предприятия. Типичная экономическая модель основана на анализе безубыточности , методе принятия решений с определением точки (объема производства), в которой общий доход уравнивается с суммарными издержками, т.е. точки, начиная с которой предприятие становится прибыльным. Точка безубыточности (break-even point - BEP) определяется делением постоянных издержек на цену единицы продукции за вычетом переменных издержек на ее изготовление (данная формула может применяться в простейшем линейном случае).

Метод дерева решений

Дерево решений - схематичное представление проблемы принятия решений. Дерево решений дает руководителю возможность учесть различные направления действий, соотнести с ними финансовые результаты, скорректировать их в соответствии с приписанной им вероятностью, а затем сравнить альтернативы.

Проблема очередей - одна из наиболее острых для многих организаций. Люди каждый день стоят в очередях у кассы в продуктовом магазине или у театральной кассы, сидят в ожидании приема у врача, в приемной комиссии вузов или в бюро занятости населения. Модель теории очередей позволяет, повысив эффективность работы организации, уменьшить очереди и подсчитать время ожидания в очереди и приблизительные убытки, которые несет организация из-за наличия очередей. Модель может быть полезна при решении самых разных проблем: менеджерам авиакомпаний (самолеты приземляются и обслуживаются в порядке очереди), работникам магазинов (очереди у кассы), директорам заводов (этапы прохождения сырья через различные производственные циклы), работникам медицинских учреждений (контроль оборачиваемости койко-мест).

Существует большое количество моделей теории очередей из-за необходимости описывать различные ситуации очередей. Очереди при «обслуживании одиночнъос требований», т.е. когда обслуживание происходит в одной точке, бывают, например, у стойки кассира в ресторане или у единственного операционного окна на почте. Очереди при «обслуживании многочисленных требований» наблюдаются, например, на той же почте при одновременном обслуживании несколькими операторами одной очереди.

Ситуации с очередями становятся более сложными при наличии большого количества очередей и большого количества служащих (как в супермаркете) либо когда люди или организационные единицы, нуждающиеся в обслуживании, должны пройти через несколько точек обслуживания (что типично, например, при получении водительских прав).

Выделяют четыре основных типа очередей, схемы которых приведены на рис. 6.15.

Очередь у врачебного кабинета представляет хороший пример одно- каналъной однофазовой очереди. Очередь только одна - существует только один канал обслуживания; врач только один - существует только одна зона обслуживания. Пациенты ожидают приема и допускаются к врачу в соответствии со временем, указанном в талончике.

Ожидание у кассы в продовольственном магазине - типичный пример многоканальной однофазовой очереди.

Примером одноканальной многофазовой очереди служит очередь на мойке автомобилей. Машины стоят в одной очереди, но проходят несколько фаз обслуживания: мойка, ополаскивание, сушка и полировка.

Рис. 6.15.

а - одноканальная; б - многоканальная однофазовая очередь; в - одноканальная многофазовая очередь; г - многоканальная многофазовая очередь

Примеры многофазовых многоканальных очередей в изобилии встречаются на производстве, где выпускается несколько видов продукции. Количество каналов, как правило, соответствует количеству выпускаемых наименований продукции, а количество фаз определяется количеством технологических операций от начала до конца производства.

В отличие от линейного программирования, модель теории очередей, или модель массового обслуживания, не обеспечивает оптимального решения. Более того, модели позволяют менеджерам разнообразить параметры ситуаций и определять возможные последствия.

Например, представьте себя менеджером банка, где есть четыре кассира, которые обслуживают клиентов, заключающих сделки. У каждого из четырех окон существует отдельная очередь. Клиенты всегда склонны выбирать самую короткую очередь. Однако часто случается так, что самая короткая очередь оказывается самой медленной, из-за того что с кем-то в ее начале проводят операцию, требующую длительного времени. Банк обеспокоен тем, что клиенты раздражаются, когда они задерживаются в длинной очереди; от коллег из других банков вы узнаете, что они установили системы, в которых все машины по обработке заявок ожидают в единой очереди, поэтому каждый следующий клиент из очереди направляется к первому освободившемуся окну.

При изучение ситуации оказывается, что клиенты прибывают в среднем со скоростью 16 человек в час, а каждый кассир справляется со сделками со средней скоростью 8 сделок за час.

В этом случае вы могли бы использовать модели теории очередей в качестве помощи, для того чтобы оценить разницу во времени ожидания в действующей системе и в альтернативной системе единой очереди для всех клиентов. Предположим, что анализ модели теории очередей показал, что клиентам приходится ждать обслуживания в среднем 7,5 минут в условиях существующей системы, но они бы ждали в среднем только 0,654 минуты в единой очереди для всех клиентов, и тогда вы, возможно, захотите изменить существующий порядок в целях достижения значительных улучшений в обслуживании. Таким образом, хотя модели теории очередей не подсказывают оптимального решения, они предоставляют данные, необходимые менеджерам для планирования наиболее эффективного обслуживания клиентов и покупателей. Модели теории очередей являются дорогими, если их разрабатывать для уникальных и сложных ситуаций. Однако существующее разнообразие моделей соответствует многим ситуациям, которыми могут заинтересоваться менеджеры. Возрастающее количество таких моделей в пакетах программного обеспечения делает их использование экономнее и проще. Приведем пример, позволяющий понять, каким образом производятся расчеты матрицы массового обслуживания.

Администратор универсама должен обеспечить работу необходимого количества кассиров. Это количество определяется двумя факторами:

  • убытками, которые несет универсам вследствие оплаты простоя кассиров из-за отсутствия покупателей;
  • убытками от потери клиентов из-за долгого ожидания в очередях.

Задача администратора сводится к тому, чтобы минимизировать

убытки как в первом, так и во втором случае. Иначе говоря, администратору нужно добиться самых коротких очередей при минимальном числе работающих кассиров. Он посчитал, что универсам не теряет ни одного клиента в течение первых четырех минут ожидания в очереди. Каждая дополнительная минута обходится универсаму в 10 долларов, так как покупатели устают ждать и покидают магазин. Затем он высчитал, сколько времени покупатели будут стоять в очереди при условии одновременной работы одного, двух, трех и четырех кассиров, а также стоимость работы кассиров. Результаты этих вычислений приведены в табл. 6.5. Подсчитав стоимость каждого варианта, администратор выбирает самый дешевый. Как видно из таблицы, работа одного кассира стоит дешевле, чем работа двух, но работа четырех кассиров обходится магазину дешевле всего.

Описанная ситуация относится к разряду самых простых, в которых может применяться модель массового обслуживания. Вычисления администратора были бы более сложными, если бы он принимал во внимание разницу в покупательских потоках (в часы пик и в спокойные часы) и разницу в оплате труда кассиров при найме на неполный рабочий день. Тем не менее, даже на таком простом примере можно понять полезность использования модели массового обслуживания.

Таблица 6.5

Расчет альтернативных издержек при моделировании массового обслуживания

Теория массового обслуживания , или очередей (англ. queueing theory ), - раздел теории вероятностей , целью исследований которого является рациональный выбор структуры системы обслуживания и процесса обслуживания на основе изучения потоков требований на обслуживание, поступающих в систему и выходящих из неё, длительности ожидания и длины очередей . В теории массового обслуживания используются методы теории вероятностей и математической статистики .

История

Первые задачи теории массового обслуживания (ТМО ) были рассмотрены сотрудником Копенгагенской телефонной компании, ученым Агнером Эрлангом , в период между 1908 и 1922 годами. Стояла задача упорядочить работу телефонной станции и заранее рассчитать качество обслуживания потребителей в зависимости от числа используемых устройств.

Поток

Однородный поток

Поток заявок однороден , если:

  • все заявки равноправны,
  • рассматриваются только моменты времени поступления заявок, то есть факты заявок без уточнения деталей каждой конкретной заявки.

Поток без последействия

Поток без последействия , если число событий любого интервала времени ( t {\displaystyle t} , ) не зависит от числа событий на любом другом не пересекающемся с нашим ( t {\displaystyle t} , t + x {\displaystyle t+x} ) интервале времени.

Стационарный поток

Поток заявок стационарен , если вероятность появления n событий на интервале времени ( t {\displaystyle t} , t + x {\displaystyle t+x} ) не зависит от времени t {\displaystyle t} , а зависит только от длины x {\displaystyle x} этого участка.

Простейший поток

Однородный стационарный поток без последействий является простейшим , потоком Пуассона .

Число n {\displaystyle n} событий такого потока, выпадающих на интервал длины x {\displaystyle x} , распределено по Закону Пуассона :

P (n , x) = (λ x) n e − λ x n ! . {\displaystyle P(n,x)={\frac {(\lambda x)^{n}e^{-\lambda x}}{n!}}.}

Пуассоновский поток заявок удобен при решении задач ТМО. Строго говоря, простейшие потоки редки на практике, однако многие моделируемые потоки допустимо рассматривать как простейшие.

Нормальный поток

Cтационарный поток без последействий, для которого интервалы между событиями распределены по нормальному закону, называется нормальным потоком : f (t) = 1 2 π σ t exp ⁡ − 1 2 (t − m t σ t) 2 {\displaystyle f(t)={\frac {1}{{\sqrt {2\pi }}\sigma _{t}}}\exp {-{\frac {1}{2}}\left({\frac {t-m_{t}}{\sigma _{t}}}\right)^{2}}} .

Поток Эрланга

Потоком Эрланга k {\displaystyle k} -го порядка называется стационарный поток без последействий, у которого интервалы между событиями представляют собой сумму k + 1 {\displaystyle k+1} независимых случайных величин, распределенных одинаково по экспоненциальному закону с параметром λ {\displaystyle \lambda } . При k = 0 {\displaystyle k=0} поток Эрланга является простейшим потоком.

Плотность распределения случайной величины T-интервала между двумя соседними событиями в потоке Эрланга k {\displaystyle k} -го порядка равна: f k (t) = λ (λ t) k Γ (α) exp ⁡ − β t {\displaystyle f_{k}(t)={\frac {\lambda (\lambda t)^{k}}{\Gamma (\alpha)}}\exp {-\beta t}} , t > 0 , α ⩾ 1 {\displaystyle t>0,\alpha \geqslant 1} .

Гамма-поток

Гамма-потоком называется стационарный поток без последействий, у которого интервалы между событиями представляют собой случайные величины, подчиненные гамма-распределению с параметрами α {\displaystyle \alpha } и β {\displaystyle \beta } : f (t) = β α t α − 1 k ! exp ⁡ − λ t {\displaystyle f(t)={\frac {\beta ^{\alpha }t^{\alpha -1}}{k!}}\exp {-\lambda t}} , t > 0 {\displaystyle t>0} , где Γ (α) = ∫ 0 ∞ x α − 1 exp ⁡ − x d x {\displaystyle \Gamma (\alpha)=\int _{0}^{\infty }x^{\alpha -1}\exp {-x}dx} .

При α = k + 1 {\displaystyle \alpha =k+1} гамма-поток является потоком Эрланга k {\displaystyle k} -го порядка.

Мгновенная плотность

Мгновенная плотность (интенсивность ) потока равна пределу отношения среднего числа событий, приходящихся на элементарный интервал времени ( t {\displaystyle t} , t + x {\displaystyle t+x} ) к длине интервала ( x {\displaystyle x} ), когда последний стремится к нулю.

λ (t) = lim x → 0 (M (t + x) − M (t) x) {\displaystyle \lambda (t)=\lim _{x\to 0}\left({\frac {M(t+x)-M(t)}{x}}\right)}

или, для простейшего потока,

λ = M (x) x , {\displaystyle \lambda ={\frac {M(x)}{x}},}

где M (x) {\displaystyle M(x)} равно

Ожидание того или иного вида обслуживания является частью нашей повседневной жизни. Мы ожидаем, чтобы пообедать в ресторане, мы стоим в очереди к кассам в магазинах и выстраиваемся в очередь в почтовых отделениях. Очередь возникает практически во всех присутственных местах: налоговых инспекциях, паспортных столах, страховых компаниях и пр. Феномен ожидания характерен не только для людей: работы, поставленные в очередь для выполнения; группа пассажирских самолетов, ожидающих разрешения на посадку в аэропорту; автомобили, движение которых приостановлено сигналом светофора на пути их следования, грузовые суда, ожидающие погрузки/разгрузки в порту, и т.п.

Изучение очередей в системах массового обслуживания (СМО) озволяет определить критерии функционирования обслуживающей системы, среди которых наиболее значимыми являются среднее время ожидания в очереди и средняя длина очереди. Эта информация используется затем для выбора надлежащего уровня обслуживания, что продемонстрировано в следующем примере.

Пример 2.6.1. Физические лица, сдающие декларацию о доходах, жалуются на медленное обслуживание. В настоящее время в данном подразделении работают три налоговых инспектора. В результате расчетов, формулы для которых мы рассмотрим ниже, обнаружена следующая зависимость между числом инспекторов и временем ожидания обслуживания.

Число инспекторов 1 2 3 4 5 6 7

Среднее время ожидания 80.2 50.3 34.9 24.8 14.912.9 9.4

______(минуты) _______________________________________

Приведенные данные свидетельствуют о том, что при работающих в настоящее время трех инспекторах среднее время ожидания обслуживания примерно равно 35 минут. По мнению посетителей, приемлемо было бы 15 минут ожидания. Как следует из этих же данных, среднее время ожидания становится меньше 15 минут, если число инспекторов больше или равно пяти.

Результаты исследования системы обслуживания также можно использовать для оптимизации модели со стоимостными характеристиками, в которой минимизируется сумма затрат, связанных с предоставлением услуг, и потерь, обусловленных задержками в их предоставлении. На рис. 2.6.1 изображена типичная стоимостная модель системы обслуживания, где затраты на обслуживание возрастают с ростом его уровня. В то же время потери, обусловленные задержками в предоставлении услуг, уменьшаются с возрастанием уровня обслуживания.


Уровень обслуживания

Главной проблемой, связанной с применением стоимостных моделей, является трудность оценки потерь в единицу времени, обусловленных задержками в предоставлении услуг.

Задачи массового обслуживания возникают в том случае, когда заявки на обслуживание (или требования ) не могут быть выполнены в силу занятости обслуживающего персонала (оборудования) или сама обслуживающая система оказывается бездействующей в силу отсутствия заявок. При моделировании данных задач используются фундаментальные понятия теории вероятности, т.к. случайными оказываются поток требований или длительность времени обслуживания, или и то и другое. При решении этих задач приходится определять либо оптимальное число обслуживающих каналов, либо оптимальную скорость потока (или находить моменты поступления заявок).

Класс моделей, пригодных для решения подобных задач, называют еще теорией очередей.

Эта теория представляет особый раздел теории случайных процессов и использует, в основном, аппарат теории вероятностей. Первые публикации в этой области относятся к 20-м гг. XX в. и принадлежат датчанину А. Эрлангу, занимавшемуся исследованиями функционирования телефонных станций – типичных СМО, где случайны моменты вызова, факт занятости абонента или всех каналов, продолжительность разговора. В дальнейшем теория очередей нашла развитие в работах К.Пальма, Ф.Поллачека, А.Я.Хинчина, Б.В.Гнеденко, А.Кофмана, Р.Крюона, Т. Cаати и других отечественных и зарубежных математиков.

При решении задач, связанных с очередями, возможны две ситуации:

а) число заказов слишком велико; имеет место большое время ожидания (недостаточный объем обслуживающего оборудования );

б) поступает недостаточное число заказов; имеет место простой оборудования (избыток оборудования ).

Необходимо найти оптимальное соотношение между потерями, вызванными простоем оборудования, и потерями из-за ожидания.

В качестве основных элементов СМО следует выделить входной поток заявок, очередь на обслуживание, cистему (механизм) обслуживания и выходящий поток заявок. В роли заявок (требований, вызовов) могут выступать покупатели в магазине, телефонные вызовы, поезда при подходе к железнодорожному узлу, вагоны под разгрузкой, автомашины на станции техобслуживания, самолеты в ожидании разрешения на взлет, штабель бревен при погрузке на автотранспорт. Роль обслуживающих приборов (каналов, линий) играют продавцы или кассиры в магазине, таможенники, пожарные машины, взлетно-посадочные полосы, экзаменаторы, ремонтные бригады.

По характеру случайного процесса, происходящего в СМО, различают системы марковские и немарковские.

Случайный процесс называется марковским , если для любого момента времени t вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент t и не зависят от того, когда и как система пришла в это состояние. Рассмотренные ниже модели относятся к марковским системам.

В случае немарковских процессов задачи исследования СМО значительно усложняются и требуют применения статистического моделирования, численных методов с использованием ЭВМ.

Эта теория представляет особый раздел теории случайных процессов и использует, в основном, аппарат теории вероятностей. Первые публикации в этой области относятся к 20-м гг. XX в. и принадлежат датчанину А. Эрлангу, занимавшемуся исследованиями функционирования телефонных станций - типичных СМО, где случайны моменты вызова, факт занятости абонента или всех каналов, продолжительность разговора. В дальнейшем теория очередей нашла развитие в работах многих советских и зарубежных математиков.

Теория очередей, - раздел теории вероятностей, изучающий математические модели разного рода реальных массового обслуживания систем. Эти модели представляют собой случайные процессы специального вида, которые называются иногда процессами обслуживания. Чаще всего используется описательное определение этих процессов, поскольку формальное их построение оказывается весьма сложным и не всегда эффективным.

Теория массового обслуживания использует главным образом аппарат теории вероятностей. Основные задачи теории массового обслуживания обычно состоят в том, чтобы на основании "локальных" свойств рассматриваемых случайных процессов изучить их стационарные характеристики (если таковые существуют) или поведение этих характеристик за большой промежуток времени. Одна из главных конечных целей исследований в этой области состоит в выборе наиболее разумной организации систем массового обслуживания.

Системы массового обслуживания (СМО)-- это такие системы, в которые в случайные моменты времени поступают заявки на обслуживание, при этом поступившие заявки обслуживаются с помощью имеющихся в распоряжении системы каналов обслуживания.

С позиции моделирования процесса массового обслуживания ситуации, когда образуются очереди заявок (требований) на обслуживание, возникают следующим образом. Поступив в обслуживающую систему, требование присоединяется к очереди других (ранее поступивших) требований. Канал обслуживания выбирает требование из находящихся в очереди, с тем, чтобы приступить к его обслуживанию. После завершения процедуры обслуживания очередного требования канал обслуживания приступает к обслуживанию следующего требования, если таковое имеется в блоке ожидания.

Цикл функционирования системы массового обслуживания подобного рода повторяется многократно в течение всего периода работы обслуживающей системы. При этом предполагается, что переход системы на обслуживание очередного требования после завершения обслуживания предыдущего требования происходит мгновенно, в случайные моменты времени.

Примерами систем массового обслуживания могут служить: Магазины, банки, ремонтные мастерские, почтовые отделения, посты технического обслуживания автомобилей, посты ремонта автомобилей, персональные компьютеры, обслуживающие поступающие заявки или требования на решение тех или иных задач, аудиторские фирмы, отделы налоговых инспекций, занимающиеся приемкой и проверкой текущей отчетности предприятий, телефонные станции и т.д.

Основными компонентами системы массового обслуживания любого вида являются:

входной поток поступающих требований или заявок на обслуживание;

дисциплина очереди;

механизм обслуживания.

Входной поток требований. Для описания входного потока требуется задать вероятностный закон, определяющий последовательность моментов поступления требований на обслуживание и указать количество таких требований в каждом очередном поступлении. При этом, как правило, оперируют понятием «вероятностное распределение моментов поступления требований». Здесь могут поступать как единичные, так и групповые требования (требования поступают группами в систему). В последнем случае обычно речь идет о системе обслуживания с параллельно-групповым обслуживанием.

Дисциплина очереди -- это важный компонент системы массового обслуживания, он определяет принцип, в соответствии с которым поступающие на вход обслуживающей системы требования подключаются из очереди к процедуре обслуживания. Чаще всего используются дисциплины очереди, определяемые следующими правилами:

  • - первым пришел - первый обслуживаешься;
  • - пришел последним -- обслуживаешься первым;
  • - случайный отбор заявок;
  • - отбор заявок по критерию приоритетности;
  • - ограничение времени ожидания момента наступления обслуживания (имеет место очередь с ограниченным временем ожидания обслуживания, что ассоциируется с понятием «допустимая длина очереди»).

Механизм обслуживания определяется характеристиками самой процедуры обслуживания и структурой обслуживающей системы. К характеристикам процедуры обслуживания относятся: продолжительность процедуры обслуживания и количество требований, удовлетворяемых в результате выполнения каждой такой процедуры. Для аналитического описания характеристик процедуры обслуживания оперируют понятием «вероятностное распределение времени обслуживания требований».

Следует отметить, что время обслуживания заявки зависит от характера самой заявки или требований клиента и от состояния и возможностей обслуживающей системы. В ряде случаев приходится также учитывать вероятность выхода обслуживающего прибора по истечении некоторого ограниченного интервала времени.

Структура обслуживающей системы определяется количеством и взаимным расположением каналов обслуживания (механизмов, приборов и т. п.). Прежде всего, следует подчеркнуть, что система обслуживания может иметь не один канал обслуживания, а несколько; система такого рода способна обслуживать одновременно несколько требований. В этом случае все каналы обслуживания предлагают одни и те же услуги, и, следовательно, можно утверждать, что имеет место параллельное обслуживание.

Система обслуживания может состоять из нескольких разнотипных каналов обслуживания, через которые должно пройти каждое обслуживаемое требование, т. е. в обслуживающей системе процедуры обслуживания требований реализуются последовательно. Механизм обслуживания определяет характеристики выходящего (обслуженного) потока требований.

Рассмотрев основные компоненты систем обслуживания, можно констатировать, что функциональные возможности любой системы массового обслуживания определяются следующими основными факторами:

  • - вероятностным распределением моментов поступлений заявок на обслуживание (единичных или групповых);
  • - вероятностным распределением времени продолжительности обслуживания;
  • - конфигурацией обслуживающей системы (параллельное, последовательное или параллельно-последовательное обслуживание);
  • - количеством и производительностью обслуживающих каналов;
  • - дисциплиной очереди;
  • - мощностью источника требований.

В качестве основных критериев эффективности функционирования систем массового обслуживания, в зависимости от характера решаемой задачи могут выступать:

  • - вероятность немедленного обслуживания поступившей заявки;
  • - вероятность отказа в обслуживании поступившей заявки;
  • - относительная и абсолютная пропускная способность системы;
  • - средний процент заявок, получивших отказ в обслуживании;
  • - среднее время ожидания в очереди;
  • - средняя длина очереди;
  • - средний доход от функционирования системы в единицу времени и т.п.

Предметом теории массового обслуживания является установление зависимости между факторами, определяющими функциональные возможности системы массового обслуживания, и эффективностью ее функционирования. В большинстве случаев все параметры, описывающие системы массового обслуживания, являются случайными величинами или функциями, поэтому эти системы относятся к стохастическим системам.

Независимо от характера процесса, протекающего в системе массового обслуживания, различают два основных вида СМО:

  • - системы с отказами, в которых заявка, поступившая в систему в момент, когда все каналы заняты, получает отказ и сразу же покидает очередь;
  • - системы с ожиданием (очередью), в которых заявка, поступившая в момент, когда все каналы обслуживания заняты, становится в очередь и ждет, пока не освободится один из каналов.

Системы массового обслуживания с ожиданием делятся на системы с ограниченным ожиданием и системы с неограниченным ожиданием.

В системах с ограниченным ожиданием может ограничиваться:

  • - длина очереди;
  • - время пребывания в очереди.

В системах с неограниченным ожиданием заявка, стоящая в очереди, ждет обслуживание неограниченно долго, т.е. пока не подойдет очередь.

По количеству каналов обслуживания СМО подразделяются на следующие группы:

Одноканальные СМО. Она состоит из одной очереди и одного устройства обслуживания. Термин "одноканальная" говорит о том, что к устройству обслуживания ведет только один путь.

Многоканальные СМО. Обслуживание очередной заявки может начаться до окончания обслуживания предыдущей заявки. Каждый канал действует как самостоятельное обслуживающее устройство.

По кругу обслуживаемых объектов различают два вида.

Замкнутые СМО. Замкнутая система массового обслуживания - это система массового обслуживания, в которой обслуженные требования могут возвращаться в систему и вновь поступать на обслуживание. Примерами замкнутой СМО являются ремонтные мастерские, сберегательные банки.

Открытые СМО. Для открытой СМО предполагается, что исходная совокупность на столько велика, что изменение ее размеров, вследствие прибытия или возвращения обслуженной заявки в исходную совокупность не оказывает существенного влияния на вероятность появления очередной заявки. массовый обслуживание математический однофазный

Если приборы обслуживания соединяются параллельно, то такое обслуживание называется однофазным, а если приборы соединяются последовательно, то многофазным, (ряд последовательных операций).

Однофазные СМО - это однородные системы, которые выполняют одну и ту же операцию обслуживания.

Многофазные СМО - это системы, в которых каналы обслуживания расположены последовательно и выполняют различные операции обслуживания. Примером многофазной СМО являются станции технического обслуживания автомобилей.

Приведенная классификация СМО является условной. На практике чаще всего СМО выступают в качестве смешанных систем. Например, заявки ожидают начала обслуживания до определенного момента, после чего система начинает работать как система с отказами.

В 1953 году Г. Кендалл предложил стандартные обозначения определений, которые используются исследователями без изменений. Для однофазных СМО символика Кендалла выглядит следующим образом:

A / B / n / m 2.1

Где A и B входной поток и поток обслуживания соответственно,

n - число каналов, n 1,

m - ёмкость накопителя.

Потоки случайных событий могут иметь различный вид:

  • - М - экспоненциальное распределение длительностей интервалов поступления заявок или длительностей обслуживания (индекс М от определяющего слова марковский процесс, т.е. такой, когда поведение процесса после момента времени t зависит лишь от состояния процесса в момент времени t и не зависит от поведения до момента времени t),
  • - D - детерминированное распределение длительностей интервалов поступления заявок или длительностей обслуживания,
  • - Ек - поток Эрланга к - го порядка для длительностей интервалов между приходами заявок или длительностей обслуживания,
  • - GI - рекуррентный поток (длительности интервалов статистически независимы и имеют одинаковое распределение),
  • - G - общий вид распределения.

Тогда в символах Кендалла вместо А и В подставляется символ одного из упомянутых потоков, например:

M/M/1 - экспоненциальные потоки с одним каналом обслуживания и неограниченной ёмкостью.

D/GI/5/10 - детерминированный входной поток, рекуррентный поток обслуживания, многоканальное СМО с 5 одинаковыми каналами, ёмкость накопителя 10 и т.д.



Публикации по теме